A novel region in the CaV2.1 α1 subunit C-terminus regulates fast synaptic vesicle fusion and vesicle docking at the mammalian presynaptic active zone
- PMID: 28786379
- PMCID: PMC5548488
- DOI: 10.7554/eLife.28412
A novel region in the CaV2.1 α1 subunit C-terminus regulates fast synaptic vesicle fusion and vesicle docking at the mammalian presynaptic active zone
Abstract
In central nervous system (CNS) synapses, action potential-evoked neurotransmitter release is principally mediated by CaV2.1 calcium channels (CaV2.1) and is highly dependent on the physical distance between CaV2.1 and synaptic vesicles (coupling). Although various active zone proteins are proposed to control coupling and abundance of CaV2.1 through direct interactions with the CaV2.1 α1 subunit C-terminus at the active zone, the role of these interaction partners is controversial. To define the intrinsic motifs that regulate coupling, we expressed mutant CaV2.1 α1 subunits on a CaV2.1 null background at the calyx of Held presynaptic terminal. Our results identified a region that directly controlled fast synaptic vesicle release and vesicle docking at the active zone independent of CaV2.1 abundance. In addition, proposed individual direct interactions with active zone proteins are insufficient for CaV2.1 abundance and coupling. Therefore, our work advances our molecular understanding of CaV2.1 regulation of neurotransmitter release in mammalian CNS synapses.
Keywords: biophysics; calcium channels; exocytosis; mouse; neuroscience; presynapse; structural biology; synaptic plasticity; synaptic transmission.
Conflict of interest statement
The authors declare that no competing interests exist.
Figures
Similar articles
-
CaV2.1 α1 Subunit Expression Regulates Presynaptic CaV2.1 Abundance and Synaptic Strength at a Central Synapse.Neuron. 2019 Jan 16;101(2):260-273.e6. doi: 10.1016/j.neuron.2018.11.028. Epub 2018 Dec 10. Neuron. 2019. PMID: 30545599 Free PMC article.
-
α-Neurexins Together with α2δ-1 Auxiliary Subunits Regulate Ca2+ Influx through Cav2.1 Channels.J Neurosci. 2018 Sep 19;38(38):8277-8294. doi: 10.1523/JNEUROSCI.0511-18.2018. Epub 2018 Aug 13. J Neurosci. 2018. PMID: 30104341 Free PMC article.
-
Synapse and Active Zone Assembly in the Absence of Presynaptic Ca2+ Channels and Ca2+ Entry.Neuron. 2020 Aug 19;107(4):667-683.e9. doi: 10.1016/j.neuron.2020.05.032. Epub 2020 Jun 16. Neuron. 2020. PMID: 32616470 Free PMC article.
-
Presynaptic Calcium Channels.Int J Mol Sci. 2019 May 6;20(9):2217. doi: 10.3390/ijms20092217. Int J Mol Sci. 2019. PMID: 31064106 Free PMC article. Review.
-
The synaptic vesicle cycle.Annu Rev Neurosci. 2004;27:509-47. doi: 10.1146/annurev.neuro.26.041002.131412. Annu Rev Neurosci. 2004. PMID: 15217342 Review.
Cited by
-
RIM and RIM-Binding Protein Localize Synaptic CaV2 Channels to Differentially Regulate Transmission in Neuronal Circuits.J Neurosci. 2024 Jul 31;44(31):e0535222024. doi: 10.1523/JNEUROSCI.0535-22.2024. J Neurosci. 2024. PMID: 38951038
-
The role of specific isoforms of CaV2 and the common C-terminal of CaV2 in calcium channel function in sensory neurons of Aplysia.Sci Rep. 2023 Nov 18;13(1):20216. doi: 10.1038/s41598-023-47573-z. Sci Rep. 2023. PMID: 37980443 Free PMC article.
-
Calcium Channels in Retinal Function and Disease.Annu Rev Vis Sci. 2022 Sep 15;8:53-77. doi: 10.1146/annurev-vision-012121-111325. Epub 2022 Jun 1. Annu Rev Vis Sci. 2022. PMID: 35650675 Free PMC article. Review.
-
Unc13: a multifunctional synaptic marvel.Curr Opin Neurobiol. 2019 Aug;57:17-25. doi: 10.1016/j.conb.2018.12.011. Epub 2019 Jan 25. Curr Opin Neurobiol. 2019. PMID: 30690332 Free PMC article. Review.
-
Presynaptic calcium channels: specialized control of synaptic neurotransmitter release.Nat Rev Neurosci. 2020 Apr;21(4):213-229. doi: 10.1038/s41583-020-0278-2. Epub 2020 Mar 11. Nat Rev Neurosci. 2020. PMID: 32161339 Free PMC article. Review.
References
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
