Evolution of organismal stoichiometry in a long-term experiment with Escherichia coli
- PMID: 28791173
- PMCID: PMC5541568
- DOI: 10.1098/rsos.170497
Evolution of organismal stoichiometry in a long-term experiment with Escherichia coli
Abstract
Organismal stoichiometry refers to the relative proportion of chemical elements in the biomass of organisms, and it can have important effects on ecological interactions from population to ecosystem scales. Although stoichiometry has been studied extensively from an ecological perspective, much less is known about the rates and directions of evolutionary changes in elemental composition. We measured carbon, nitrogen and phosphorus content of 12 Escherichia coli populations that evolved under controlled carbon-limited, serial-transfer conditions for 50 000 generations. The bacteria evolved higher relative nitrogen and phosphorus content, consistent with selection for increased use of the more abundant elements. Total carbon assimilated also increased, indicating more efficient use of the limiting element. We also measured stoichiometry in one population repeatedly through time. Stoichiometry changed more rapidly in early generations than later on, similar to the trajectory seen for competitive fitness. Altogether, our study shows that stoichiometry evolved over long time periods, and that it did so in a predictable direction, given the carbon-limited environment.
Keywords: Escherichia coli; carbon limitation; experimental evolution; stoichiometry.
Conflict of interest statement
We declare we have no competing interests.
Figures
Similar articles
-
SEED: A framework for integrating ecological stoichiometry and eco-evolutionary dynamics.Ecol Lett. 2023 Sep;26 Suppl 1:S109-S126. doi: 10.1111/ele.14285. Ecol Lett. 2023. PMID: 37840025
-
Growth rate and resource imbalance interactively control biomass stoichiometry and elemental quotas of aquatic bacteria.Ecology. 2017 Mar;98(3):820-829. doi: 10.1002/ecy.1705. Ecology. 2017. PMID: 27995610
-
Convergence of detrital stoichiometry predicts thresholds of nutrient-stimulated breakdown in streams.Ecol Appl. 2016 Sep;26(6):1745-1757. doi: 10.1890/15-1217.1. Ecol Appl. 2016. PMID: 27755690
-
Ecological Stoichiometry for Parasitologists.Trends Parasitol. 2018 Nov;34(11):928-933. doi: 10.1016/j.pt.2018.07.008. Epub 2018 Aug 10. Trends Parasitol. 2018. PMID: 30104137 Review.
-
Biological stoichiometry: a chemical bridge between ecosystem ecology and evolutionary biology.Am Nat. 2006 Dec;168 Suppl 6:S25-35. doi: 10.1086/509048. Am Nat. 2006. PMID: 17109326 Review.
Cited by
-
Experimental evolution of competing bean beetle species reveals long-term reversals of short-term evolution, but no consistent character displacement.Ecol Evol. 2020 Mar 13;10(8):3727-3737. doi: 10.1002/ece3.6164. eCollection 2020 Apr. Ecol Evol. 2020. PMID: 32313631 Free PMC article.
-
Experimental Design, Population Dynamics, and Diversity in Microbial Experimental Evolution.Microbiol Mol Biol Rev. 2018 Jul 25;82(3):e00008-18. doi: 10.1128/MMBR.00008-18. Print 2018 Sep. Microbiol Mol Biol Rev. 2018. PMID: 30045954 Free PMC article. Review.
-
Linking genotypic and phenotypic changes in the E. coli long-term evolution experiment using metabolomics.Elife. 2023 Nov 22;12:RP87039. doi: 10.7554/eLife.87039. Elife. 2023. PMID: 37991493 Free PMC article.
-
The landscape of transcriptional and translational changes over 22 years of bacterial adaptation.Elife. 2022 Oct 10;11:e81979. doi: 10.7554/eLife.81979. Elife. 2022. PMID: 36214449 Free PMC article.
-
Market forces determine the distribution of a leaky function in a simple microbial community.Proc Natl Acad Sci U S A. 2021 Sep 28;118(39):e2109813118. doi: 10.1073/pnas.2109813118. Proc Natl Acad Sci U S A. 2021. PMID: 34548403 Free PMC article.
References
-
- Vanni MJ, Flecker AS, Hood JM, Headworth JL. 2002. Stoichiometry of nutrient recycling by vertebrates in a tropical stream: linking species identity and ecosystem processes. Ecol. Lett. 5, 285–293. (doi:10.1046/j.1461-0248.2002.00314.x) - DOI
-
- Klausmeier CA, Litchman E, Daufresne T, Levin SA. 2004. Optimal nitrogen-to-phosphorus stoichiometry of phytoplankton. Nature 429, 171–174. (doi:10.1038/nature02454) - DOI - PubMed
-
- Bertram S, Bowen M, Kyle M, Schade J. 2008. Extensive natural intraspecific variation in stoichiometric (C: N: P) composition in two terrestrial insect species. J. Insect Sci. 8, 26 (doi:10.1673/031.008.2601) - DOI - PMC - PubMed
-
- Zimmerman AE, Allison SD, Martiny AC. 2014. Phylogenetic constraints on elemental stoichiometry and resource allocation in heterotrophic marine bacteria. Environ. Microbiol. 16, 1398–1410. (doi:10.1111/1462-2920.12329) - DOI - PubMed
-
- Sterner RW, Elser JJ. 2002. Ecological stoichiometry: the biology of elements from molecules to the biosphere. Princeton, NJ: Princeton University Press.
Associated data
LinkOut - more resources
Full Text Sources
Other Literature Sources
