A Single-Amino-Acid Substitution at Position 225 in Hemagglutinin Alters the Transmissibility of Eurasian Avian-Like H1N1 Swine Influenza Virus in Guinea Pigs

J Virol. 2017 Oct 13;91(21):e00800-17. doi: 10.1128/JVI.00800-17. Print 2017 Nov 1.


Efficient transmission from human to human is the prerequisite for an influenza virus to cause a pandemic; however, the molecular determinants of influenza virus transmission are still largely unknown. In this study, we explored the molecular basis for transmission of Eurasian avian-like H1N1 (EAH1N1) swine influenza viruses by comparing two viruses that are genetically similar but differ in their transmissibility in guinea pigs: the A/swine/Guangxi/18/2011 virus (GX/18) is highly transmissible by respiratory droplet in guinea pigs, whereas the A/swine/Heilongjiang/27/2012 virus (HLJ/27) does not transmit in this animal model. We used reverse genetics to generate a series of reassortants and mutants in the GX/18 background and tested their transmissibility in guinea pigs. We found that a single-amino-acid substitution of glycine (G) for glutamic acid (E) at position 225 (E225G) in the HA1 protein completely abolished the respiratory droplet transmission of GX/18, whereas the substitution of E for G at the same position (G225E) in HA1 enabled HLJ/27 to transmit in guinea pigs. We investigated the underlying mechanism and found that viruses bearing 225E in HA1 replicated more rapidly than viruses bearing 225G due to differences in assembly and budding efficiencies. Our study indicates that the amino acid 225E in HA1 plays a key role in EAH1N1 swine influenza virus transmission and provides important information for evaluating the pandemic potential of field influenza virus strains.IMPORTANCE Efficient transmission among humans is a prerequisite for a novel influenza virus to cause a human pandemic. Transmissibility of influenza viruses is a polygenic trait, and understanding the genetic determinants for transmissibility will provide useful insights for evaluating the pandemic potential of influenza viruses in the field. Several amino acids in the hemagglutinin (HA) protein of influenza viruses have been shown to be important for transmissibility, usually by increasing virus affinity for human-type receptors. In this study, we explored the genetic basis of the transmissibility difference between two Eurasian avian-like H1N1 (EAH1N1) swine influenza viruses in guinea pigs and found that the amino acid glutamic acid at position 225 in the HA1 protein plays a critical role in the transmission of EAH1N1 virus by increasing the efficiency of viral assembly and budding.

Keywords: EAH1N1; genetic basis; transmissibility.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Substitution
  • Animals
  • Disease Models, Animal
  • Female
  • Guinea Pigs
  • Hemagglutinin Glycoproteins, Influenza Virus / genetics*
  • Influenza A Virus, H1N1 Subtype / genetics*
  • Orthomyxoviridae Infections / transmission
  • Orthomyxoviridae Infections / veterinary*
  • Orthomyxoviridae Infections / virology
  • Swine
  • Swine Diseases / pathology
  • Swine Diseases / transmission
  • Swine Diseases / virology*
  • Viral Proteins / genetics*
  • Virus Replication / genetics*


  • Hemagglutinin Glycoproteins, Influenza Virus
  • Viral Proteins