Comprehensive single-cell transcriptional profiling of a multicellular organism
- PMID: 28818938
- PMCID: PMC5894354
- DOI: 10.1126/science.aam8940
Comprehensive single-cell transcriptional profiling of a multicellular organism
Abstract
To resolve cellular heterogeneity, we developed a combinatorial indexing strategy to profile the transcriptomes of single cells or nuclei, termed sci-RNA-seq (single-cell combinatorial indexing RNA sequencing). We applied sci-RNA-seq to profile nearly 50,000 cells from the nematode Caenorhabditis elegans at the L2 larval stage, which provided >50-fold "shotgun" cellular coverage of its somatic cell composition. From these data, we defined consensus expression profiles for 27 cell types and recovered rare neuronal cell types corresponding to as few as one or two cells in the L2 worm. We integrated these profiles with whole-animal chromatin immunoprecipitation sequencing data to deconvolve the cell type-specific effects of transcription factors. The data generated by sci-RNA-seq constitute a powerful resource for nematode biology and foreshadow similar atlases for other organisms.
Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Figures
Comment in
-
Development: Transcriptomic blueprints.Nat Rev Genet. 2017 Nov;18(11):639. doi: 10.1038/nrg.2017.77. Epub 2017 Sep 18. Nat Rev Genet. 2017. PMID: 28919637 No abstract available.
Similar articles
-
Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding.Science. 2018 Apr 13;360(6385):176-182. doi: 10.1126/science.aam8999. Epub 2018 Mar 15. Science. 2018. PMID: 29545511 Free PMC article.
-
Optimized single-nucleus transcriptional profiling by combinatorial indexing.Nat Protoc. 2023 Jan;18(1):188-207. doi: 10.1038/s41596-022-00752-0. Epub 2022 Oct 19. Nat Protoc. 2023. PMID: 36261634 Free PMC article. Review.
-
Dissecting Cell-Type Composition and Activity-Dependent Transcriptional State in Mammalian Brains by Massively Parallel Single-Nucleus RNA-Seq.Mol Cell. 2017 Dec 7;68(5):1006-1015.e7. doi: 10.1016/j.molcel.2017.11.017. Mol Cell. 2017. PMID: 29220646 Free PMC article.
-
Nuclear RNA-seq of single neurons reveals molecular signatures of activation.Nat Commun. 2016 Apr 19;7:11022. doi: 10.1038/ncomms11022. Nat Commun. 2016. PMID: 27090946 Free PMC article.
-
Transcriptomics in the RNA-seq era.Curr Opin Chem Biol. 2013 Feb;17(1):4-11. doi: 10.1016/j.cbpa.2012.12.008. Epub 2013 Jan 2. Curr Opin Chem Biol. 2013. PMID: 23290152 Review.
Cited by
-
Deciphering Cell Fate Decision by Integrated Single-Cell Sequencing Analysis.Annu Rev Biomed Data Sci. 2020 Jul;3:1-22. doi: 10.1146/annurev-biodatasci-111419-091750. Epub 2020 Mar 2. Annu Rev Biomed Data Sci. 2020. PMID: 32780577 Free PMC article.
-
Single-cell sequencing techniques from individual to multiomics analyses.Exp Mol Med. 2020 Sep;52(9):1419-1427. doi: 10.1038/s12276-020-00499-2. Epub 2020 Sep 15. Exp Mol Med. 2020. PMID: 32929221 Free PMC article. Review.
-
The Known Unknowns of the Immune Response to Coccidioides.J Fungi (Basel). 2021 May 11;7(5):377. doi: 10.3390/jof7050377. J Fungi (Basel). 2021. PMID: 34065016 Free PMC article. Review.
-
Machine and Deep Learning Methods for Predicting 3D Genome Organization.Methods Mol Biol. 2025;2856:357-400. doi: 10.1007/978-1-0716-4136-1_22. Methods Mol Biol. 2025. PMID: 39283464 Review.
-
Human-specific genetics: new tools to explore the molecular and cellular basis of human evolution.Nat Rev Genet. 2023 Oct;24(10):687-711. doi: 10.1038/s41576-022-00568-4. Epub 2023 Feb 3. Nat Rev Genet. 2023. PMID: 36737647 Free PMC article. Review.
References
-
- Wills QF, et al. Single-cell gene expression analysis reveals genetic associations masked in whole-tissue experiments. Nat. Biotechnol. 2013;31:748–752. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
