Enhanced Therapeutic Effects of Human iPS Cell Derived-Cardiomyocyte by Combined Cell-Sheets with Omental Flap Technique in Porcine Ischemic Cardiomyopathy Model

Sci Rep. 2017 Aug 18;7(1):8824. doi: 10.1038/s41598-017-08869-z.


Transplant of human induced pluripotent stem cell derived cardiomyocytes (hiPS-CMs) cell-sheet is a promising approach for treating ischemic cardiomyopathy (ICM). However, poor blood supply to the transplanted cell-sheet is a concern related to the effectiveness and durability of the treatment. Herein, we hypothesized that the combined the omentum flap might enhance survival and the therapeutic effects of hiPS-CM cell-sheet transplant for ICM treatment. Treatment by Wnt signaling molecules in hiPS cells produced hiPS-CMs, which were magnetically labeled by superparamagnetic iron oxide (SPIO), followed by culture in the thermoresponsive dishes to generate hiPS-CMs cell-sheets. A porcine ICM model included 4 groups; sham operation, omentum flap only, cell-sheet only, or combination therapy. Ejection fraction (EF) was significantly greater in the cell-sheet only and combination group compared to the other groups during the follow-up period. At 3 months, the EF of the combination group was significantly greater than that of the cell-sheet only group. Consistently, the survival rate of the SPIO-labeled hiPS-CMs, as assessed by MRI, was significantly greater in the combination group than in the cell-sheet only group. This cell delivery system would be useful in optimizing the hiPS-CM cell-sheet transplant for treating severe heart failure.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Biomarkers
  • Cell Culture Techniques
  • Cell Differentiation*
  • Disease Models, Animal
  • Gene Expression
  • Humans
  • Induced Pluripotent Stem Cells / cytology*
  • Myocardial Ischemia / metabolism*
  • Myocardial Ischemia / pathology
  • Myocardial Ischemia / physiopathology
  • Myocardial Ischemia / therapy
  • Myocytes, Cardiac / cytology*
  • Myocytes, Cardiac / metabolism*
  • Neovascularization, Physiologic
  • Stem Cell Transplantation
  • Swine


  • Biomarkers