Plastics and cardiovascular health: phthalates may disrupt heart rate variability and cardiovascular reactivity

Am J Physiol Heart Circ Physiol. 2017 Nov 1;313(5):H1044-H1053. doi: 10.1152/ajpheart.00364.2017. Epub 2017 Aug 25.


Plastics have revolutionized medical device technology, transformed hematological care, and facilitated modern cardiology procedures. Despite these advances, studies have shown that phthalate chemicals migrate out of plastic products and that these chemicals are bioactive. Recent epidemiological and research studies have suggested that phthalate exposure adversely affects cardiovascular function. Our objective was to assess the safety and biocompatibility of phthalate chemicals and resolve the impact on cardiovascular and autonomic physiology. Adult mice were implanted with radiofrequency transmitters to monitor heart rate variability, blood pressure, and autonomic regulation in response to di-2-ethylhexyl-phthalate (DEHP) exposure. DEHP-treated animals displayed a decrease in heart rate variability (-17% SD of normal beat-to-beat intervals and -36% high-frequency power) and an exaggerated mean arterial pressure response to ganglionic blockade (31.5% via chlorisondamine). In response to a conditioned stressor, DEHP-treated animals displayed enhanced cardiovascular reactivity (-56% SD major axis Poincarè plot) and prolonged blood pressure recovery. Alterations in cardiac gene expression of endothelin-1, angiotensin-converting enzyme, and nitric oxide synthase may partly explain these cardiovascular alterations. This is the first study to show an association between phthalate chemicals that are used in medical devices with alterations in autonomic regulation, heart rate variability, and cardiovascular reactivity. Because changes in autonomic balance often precede clinical manifestations of hypertension, atherosclerosis, and conduction abnormalities, future studies are warranted to assess the downstream impact of plastic chemical exposure on end-organ function in sensitive patient populations. This study also highlights the importance of adopting safer biomaterials, chemicals, and/or surface coatings for use in medical devices.NEW & NOTEWORTHY Phthalates are widely used in the manufacturing of consumer and medical products. In the present study, di-2-ethylhexyl-phthalate exposure was associated with alterations in heart rate variability and cardiovascular reactivity. This highlights the importance of investigating the impact of phthalates on health and identifying suitable alternatives for medical device manufacturing.

Keywords: autonomic; cardiovascular reactivity; endocrine disruptor; heart rate variability; phthalate.

MeSH terms

  • Animals
  • Arterial Pressure / drug effects
  • Autonomic Nervous System / drug effects*
  • Autonomic Nervous System / physiopathology
  • Biocompatible Materials / toxicity*
  • Cardiovascular Diseases / chemically induced*
  • Cardiovascular Diseases / genetics
  • Cardiovascular Diseases / physiopathology
  • Conditioning, Psychological
  • Diethylhexyl Phthalate / toxicity*
  • Fear
  • Ganglia, Autonomic / drug effects
  • Ganglia, Autonomic / physiopathology
  • Gene Expression Regulation / drug effects
  • Heart / innervation*
  • Heart Rate / drug effects*
  • Male
  • Mice, Inbred C57BL
  • Plasticizers / toxicity*
  • Risk Assessment
  • Time Factors


  • Biocompatible Materials
  • Plasticizers
  • Diethylhexyl Phthalate