Dynamic Fixation of Humeral Shaft Fractures Using Active Locking Plates: A Prospective Observational Study

Iowa Orthop J. 2017;37:1-10.

Abstract

Background: Rigid locked plating constructs can suppress fracture healing by inhibiting interfragmentary motion required to stimulate natural bone healing by callus formation. Dynamic fixation with active locking plates reduces construct stiffness, enables controlled interfragmentary motion, and has been shown to induce faster and stronger bone healing in vivo compared to rigid locking plates. This prospective observational study represents the first clinical use of active locking plates. It documents our early clinical experience with active plates for stabilization of humeral shaft fractures to assess their durability and understand potential complications.

Methods: Eleven consecutive patients with humeral shaft fractures (AO/OTA types 12 A-C) were prospectively enrolled at a level I and a level II trauma center. Fractures were stabilized by using active locking plates without supplemental bone graft or bone morphogenic proteins. The screw holes of active locking plates are elastically suspended in elastomer envelopes inside the plate, enabling up to 1.5 mm of controlled interfragmentary motion. Progression of fracture healing and integrity of implant fixation was assessed radiographically at 3, 6, 12, and 24 weeks post surgery. Patient-reported functional outcome measures were obtained at 6, 12, and 24 weeks post surgery. The primary endpoint of this study was plate durability in absence of plate bending or breakage, or failure of the elastically suspended locking hole mechanism. Secondary endpoints included fracture healing, complications requiring revision surgery, and functional outcome scores.

Results: The eleven patients had six simple AO/ OTA type 12A fractures, three wedge type 12B fractures, and two comminuted type 12C fracture, including one open fracture. All active locking plates endured the 6-month loading period without any signs of fatigue or failure. Ten of eleven fractures healed at 10.9 ± 5.2 weeks, as evident by bridging callus and pain-free function. One fracture required revision surgery 37 weeks post surgery due to late fixation failure at the screwbone interface in the presence of a atrophic delayed union. The average Disability of the Arm, Shoulder and Hand (DASH) score improved from 31 ± 22 at week 6 to 13 ± 15 by week 24, approaching that of the normal, healthy population (DASH = 10.1). By week 12, the difference between Constant shoulder scores, expressed as the difference between the affected and contralateral arm (8 ± 8), was considered excellent. By week 24, the SF-12 physical health score (44 ± 9) and mental health score (48 ± 11) approached the mean value of 50 that represents the norm for the general U.S. population.

Conclusion: Absence of failure of the plate and locking holes suggests that dynamic fixation of humeral shaft fractures with active plates provides safe and effective fixation. Moreover, early callus bridging and excellent functional outcome scores suggest that dynamic fixation with active locking plates may promote increased fracture healing over standard locked plating.

Publication types

  • Observational Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Bone Plates*
  • Bone Screws
  • Female
  • Fracture Fixation, Internal / methods*
  • Fracture Healing
  • Humans
  • Humeral Fractures / surgery*
  • Male
  • Middle Aged
  • Prospective Studies
  • Reoperation
  • Treatment Outcome
  • Young Adult