Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
, 88, 37-135

Polyphasic Taxonomy of Aspergillus Section Aspergillus (Formerly Eurotium), and Its Occurrence in Indoor Environments and Food

Affiliations

Polyphasic Taxonomy of Aspergillus Section Aspergillus (Formerly Eurotium), and Its Occurrence in Indoor Environments and Food

A J Chen et al. Stud Mycol.

Abstract

Aspergillus section Aspergillus (formerly the genus Eurotium) includes xerophilic species with uniseriate conidiophores, globose to subglobose vesicles, green conidia and yellow, thin walled eurotium-like ascomata with hyaline, lenticular ascospores. In the present study, a polyphasic approach using morphological characters, extrolites, physiological characters and phylogeny was applied to investigate the taxonomy of this section. Over 500 strains from various culture collections and new isolates obtained from indoor environments and a wide range of substrates all over the world were identified using calmodulin gene sequencing. Of these, 163 isolates were subjected to molecular phylogenetic analyses using sequences of ITS rDNA, partial β-tubulin (BenA), calmodulin (CaM) and RNA polymerase II second largest subunit (RPB2) genes. Colony characteristics were documented on eight cultivation media, growth parameters at three incubation temperatures were recorded and micromorphology was examined using light microscopy as well as scanning electron microscopy to illustrate and characterize each species. Many specific extrolites were extracted and identified from cultures, including echinulins, epiheveadrides, auroglaucins and anthraquinone bisanthrons, and to be consistent in strains of nearly all species. Other extrolites are species-specific, and thus valuable for identification. Several extrolites show antioxidant effects, which may be nutritionally beneficial in food and beverages. Important mycotoxins in the strict sense, such as sterigmatocystin, aflatoxins, ochratoxins, citrinin were not detected despite previous reports on their production in this section. Adopting a polyphasic approach, 31 species are recognized, including nine new species. ITS is highly conserved in this section and does not distinguish species. All species can be differentiated using CaM or RPB2 sequences. For BenA, Aspergillus brunneus and A. niveoglaucus share identical sequences. Ascospores and conidia morphology, growth rates at different temperatures are most useful characters for phenotypic species identification.

Keywords: A. aurantiacoflavus Hubka, A.J. Chen, Jurjević & Samson; A. caperatus A.J. Chen, Frisvad & Samson; A. endophyticus Hubka, A.J. Chen, & Samson; A. levisporus Hubka, A.J. Chen, Jurjević & Samson; A. porosus A.J. Chen, Frisvad & Samson; A. tamarindosoli A.J. Chen, Frisvad & Samson; A. teporis A.J. Chen, Frisvad & Samson; A. zutongqii A.J. Chen, Frisvad & Samson; Ascomycota; Aspergillaceae; Aspergillus aerius A.J. Chen, Frisvad & Samson; Aspergillus proliferans; Eurotiales; Eurotium amstelodami; Extrolites; Multi-gene phylogeny.

Figures

Fig. 1
Fig. 1
A 50 % majority rule Maximum likelihood consensus tree based on combined dataset of BenA, CaM and RPB2 sequences showing the relationship of species within Aspergillus sect. Aspergillus. Dataset contained 164 taxa, other alignment characteristics, partitioning scheme and nucleotide substitution models are listed in Table 3, Table 4. Maximum likelihood bootstrap proportion (bs) and Bayesian posterior probability (pp) are appended to nodes; only bs ≥ 70 % and pp ≥ 95 % are shown, lower supports are indicated with a hyphen, whereas asterisks indicate full support (100 % bs or 1.00 pp); ex-type strains are designated by a superscript T. The tree is rooted with Hamigera avellanea NRRL 1938T.
Fig. 1
Fig. 1
A 50 % majority rule Maximum likelihood consensus tree based on combined dataset of BenA, CaM and RPB2 sequences showing the relationship of species within Aspergillus sect. Aspergillus. Dataset contained 164 taxa, other alignment characteristics, partitioning scheme and nucleotide substitution models are listed in Table 3, Table 4. Maximum likelihood bootstrap proportion (bs) and Bayesian posterior probability (pp) are appended to nodes; only bs ≥ 70 % and pp ≥ 95 % are shown, lower supports are indicated with a hyphen, whereas asterisks indicate full support (100 % bs or 1.00 pp); ex-type strains are designated by a superscript T. The tree is rooted with Hamigera avellanea NRRL 1938T.
Fig. 2
Fig. 2
A 50 % majority rule Maximum likelihood consensus tree based on partial β-tubulin (BenA) sequences showing the relationship of species within Aspergillus sect. Aspergillus. Maximum likelihood bootstrap proportion (bs) and Bayesian posterior probability (pp) are appended to nodes; only bs ≥ 70 % and pp ≥ 95 % are shown, lower supports are indicated with a hyphen, whereas asterisks indicate full support (100 % bs or 1.00 pp); ex-type strains are designated by a superscript T. The tree is rooted with Hamigera avellanea NRRL 1938T.
Fig. 2
Fig. 2
A 50 % majority rule Maximum likelihood consensus tree based on partial β-tubulin (BenA) sequences showing the relationship of species within Aspergillus sect. Aspergillus. Maximum likelihood bootstrap proportion (bs) and Bayesian posterior probability (pp) are appended to nodes; only bs ≥ 70 % and pp ≥ 95 % are shown, lower supports are indicated with a hyphen, whereas asterisks indicate full support (100 % bs or 1.00 pp); ex-type strains are designated by a superscript T. The tree is rooted with Hamigera avellanea NRRL 1938T.
Fig. 3
Fig. 3
A 50 % majority rule Maximum likelihood consensus tree based on partial calmodulin (CaM) sequences showing the relationship of species within Aspergillus sect. Aspergillus. Maximum likelihood bootstrap proportion (bs) and Bayesian posterior probability (pp) are appended to nodes; only bs ≥ 70 % and pp ≥ 95 % are shown, lower supports are indicated with a hyphen, whereas asterisks indicate full support (100 % bs or 1.00 pp); ex-type strains are designated by a superscript T. The tree is rooted with Hamigera avellanea NRRL 1938T.
Fig. 3
Fig. 3
A 50 % majority rule Maximum likelihood consensus tree based on partial calmodulin (CaM) sequences showing the relationship of species within Aspergillus sect. Aspergillus. Maximum likelihood bootstrap proportion (bs) and Bayesian posterior probability (pp) are appended to nodes; only bs ≥ 70 % and pp ≥ 95 % are shown, lower supports are indicated with a hyphen, whereas asterisks indicate full support (100 % bs or 1.00 pp); ex-type strains are designated by a superscript T. The tree is rooted with Hamigera avellanea NRRL 1938T.
Fig. 4
Fig. 4
A 50 % majority rule Maximum likelihood consensus tree based on partial RNA polymerase II second largest subunit (RPB2) sequences showing the relationship of species within Aspergillus sect. Aspergillus. Maximum likelihood bootstrap proportion (bs) and Bayesian posterior probability (pp) are appended to nodes; only bs ≥ 70 % and pp ≥ 95 % are shown, lower supports are indicated with a hyphen, whereas asterisks indicate full support (100 % bs or 1.00 pp); ex-type strains are designated by a superscript T. The tree is rooted with Hamigera avellanea NRRL 1938T.
Fig. 4
Fig. 4
A 50 % majority rule Maximum likelihood consensus tree based on partial RNA polymerase II second largest subunit (RPB2) sequences showing the relationship of species within Aspergillus sect. Aspergillus. Maximum likelihood bootstrap proportion (bs) and Bayesian posterior probability (pp) are appended to nodes; only bs ≥ 70 % and pp ≥ 95 % are shown, lower supports are indicated with a hyphen, whereas asterisks indicate full support (100 % bs or 1.00 pp); ex-type strains are designated by a superscript T. The tree is rooted with Hamigera avellanea NRRL 1938T.
Fig. 5
Fig. 5
A 50 % majority rule Maximum likelihood consensus tree based on ITS sequences. Maximum likelihood bootstrap proportion (bs) and Bayesian posterior probability (pp) are appended to nodes; only bs ≥ 70 % and pp ≥ 95 % are shown, lower supports are indicated with a hyphen, whereas asterisks indicate full support (100 % bs or 1.00 pp); ex-type strains are designated by a superscript T. The tree is rooted with Hamigera avellanea NRRL 1938T.
Fig. 6
Fig. 6
Formation of ascomata and range of ascospore phenotypes. AD. Initials and ascomata. E, F.Aspergillus aerius CBS 141771T. G, H.A. appendiculatus CBS 374.75T. I, J.A. aurantiacoflavus CBS 141930T. K, L.A. brunneus CBS 112.26T. M, N.A. caperatus CBS 141774T. O, P.A. chevalieri CBS 522.65T. Q, R.A. cibarius KACC 46346T. S, T.A. costiformis CBS 101749T. U, V.A. cristatus CBS 123.53T. W, X.A. cumulatus KACC 47316T. Scale bars: D = 20 μm, applies to A–C; W = 10 μm, applies to E, G, I, K, M, O, Q, S, U; X = 2 μm, applies to F, H, J, L, N, P, R, T, V.
Fig. 7
Fig. 7
Range of ascospore phenotypes. A, B.Aspergillus endophyticus CBS 141766T. C, D.A. glaucus CBS 516.65T. E, F.A. intermedius CBS 523.65T. G, H.A. leucocarpus CBS 353.68T. I, J.A. levisporus CBS 141767T. K, L.A. mallochii CBS 141928T. M, N.A. megasporus CBS 141929T. O, P.A. montevidensis CBS 491.65T. Q, R.A. neocarnoyi CBS 471.65T. S, T.A. niveoglaucus CBS 114.27T. U, V.A. osmophilus CBS 134258T. W, X.A. porosus CBS 141770T. Scale bars: W = 10 μm, applies to A, C, E, G, I, K, M, O, Q, S, U; X = 2 μm, applies to B, D, F, H, J, L, N, P, R, T, V.
Fig. 8
Fig. 8
Range of ascospore phenotypes. A, B.Aspergillus proliferans DTO 322-A2. C, D.A. pseudoglaucus CBS 101747 (ex-type of A. fimicola). E, F.A. ruber CBS 530.65T. G, H.A. ruber CBS 101748 (ex-type of A. tuberculatus). I, J.A. sloanii CBS 138177T. K, L.A. tamarindosoli CBS 141775T. M, N.A. teporis CBS 141768T. O, P.A. tonophilus KACC 47150. Q, R.A. xerophilus CBS 938.73T. S, T.A. zutongqii CBS 141773T. Scale bars: S = 10 μm, applies to A, C, E, G, I, K, M, O, Q; T = 2 μm, applies to B, D, F, H, J, L, N, P, R.
Fig. 9
Fig. 9
Range of conidia phenotypes. A, B.Aspergillus aerius CBS 141771T. C, D.A. appendiculatus CBS 374.75T. E, F.A. aurantiacoflavus CBS 141930T. G, H.A. brunneus CBS 112.26T. I, J.A. caperatus CBS 141774T. K, L.A. chevalieri CBS 522.65T. M, N.A. cibarius KACC 46346T. O, P.A. costiformis CBS 101749T. Q, R.A. cristatus CBS 123.53T. S, T.A. cumulatus KACC 47316T. U, V.A. endophyticus CBS 141766T. W, X.A. glaucus CBS 516.65T. Scale bars: W = 10 μm, applies to A, C, E, G, I, K, M, O, Q, S, U; X = 2 μm, applies to B, D, F, H, J, L, N, P, R, T, V.
Fig. 10
Fig. 10
Range of conidia phenotypes. A, B.Aspergillus intermedius CBS 523.65T. C, D.A. leucocarpus CBS 353.68T. E, F.A. levisporus CBS 141767T. G, H.A. mallochii CBS 141928T. I, J.A. megasporus CBS 141929T. K, L.A. montevidensis CBS 491.65T. M, N.A. neocarnoyi CBS 471.65T. O, P.A. niveoglaucus CBS 114.27T. Q, R.A. osmophilus CBS 134258T. S, T.A. porosus CBS 141770T. U, V.A. pseudoglaucus CBS 101747 (ex-type of A. fimicola). W, X.A. pseudoglaucus CBS 379.75 (ex-type of A. glaber). Scale bars: W = 10 μm, applies to A, C, E, G, I, K, M, O, Q, S, U; X = 2 μm, applies to B, D, F, H, J, L, N, P, R, T, V.
Fig. 11
Fig. 11
Range of conidia phenotypes. A, B.Aspergillus proliferans DTO 322-A2. C, D.A. ruber CBS 530.65T. E, F.A. sloanii CBS 138177T. G, H.A. tamarindosoli CBS 141775T. I, J.A. teporis CBS 141768T. K, L.A. tonophilus KACC 47150. M, N.A. xerophilus CBS 938.73T. O, P.A. zutongqii CBS 141773T. Scale bars: O = 10 μm, applies to A, C, E, G, I, K, M; P = 2 μm, applies to B, D, F, H, J, L, N.
Fig. 12
Fig. 12
Diversity of macromorphology (colonies on M40Y, 25 °C, 7 d) within Aspergillus sect. Aspergillus species. AE.A. montevidensis. From left to right: CBS 491.65T, CBS 651.74 (ex-type of A. vitis), CBS 410.65, CBS 518.65 (ex-type of A. hollandicus), CBS 111.52. FJ.A. proliferans. From left to right: CBS 121.45T, DTO 322-A2, CCF 4096, CCF 5395, CCF 5392. KO.A. pseudoglaucus. From left to right: CBS 123.28T, CBS 101747 (ex-type of A. fimicola), CBS 379.75 (ex-type of A. glaber), DTO 147-G3, CGMCC 3.00460. PT.A. ruber. From left to right: CBS 530.65T, DTO 238-C4, CBS 101748 (ex-type of A. tuberculatus), CBS 104.18, CBS 464.65 (ex-type of A. athecius).
Fig. 13
Fig. 13
Growth comparison of Aspergillus sect. Aspergillus species on M40Y for 7 d and 14 d at 25 °C.
Fig. 14
Fig. 14
Growth comparison of Aspergillus sect. Aspergillus species on M40Y for 7 d and 14 d at 25 °C.
Fig. 15
Fig. 15
Growth comparison of Aspergillus sect. Aspergillus species on M40Y for 7 d and 14 d at 25 °C.
Fig. 16
Fig. 16
Growth comparison of Aspergillus sect. Aspergillus species on M40Y for 7 d and 14 d at 25 °C.
Fig. 17
Fig. 17
Growth comparison of Aspergillus sect. Aspergillus species on M40Y for 7 d and 14 d at 25 °C.
Fig. 18
Fig. 18
Aspergillus aerius CBS 141771T. A. Colonies after 7 d at 25 °C: top row left to right, CYA, M40Y, CY20S and CYAS; bottom row left to right, MEA, reverse M40Y, M60Y and DG18. B, E. Conidiophores. C, D. Ascomata. F, I. Ascospores. G, H. Conidia. Scale bars: B, C = 20 μm; D = 250 μm; E–G = 10 μm; H, I = 2 μm.
Fig. 19
Fig. 19
Aspergillus appendiculatus CBS 374.75T. A. Colonies after 7 d at 25 °C: top row left to right, CYA, M40Y, CY20S and CYAS; bottom row left to right, MEA, reverse M40Y, M60Y and DG18. B, E. Conidiophores. C, D. Ascomata. F, I. Ascospores. G, H. Conidia. Scale bars: B, C = 20 μm; D = 250 μm; E–G = 10 μm; H, I = 2 μm.
Fig. 20
Fig. 20
Aspergillus aurantiacoflavus CBS 141930T. A. Colonies after 7 d at 25 °C: top row left to right, CYA, M40Y, CY20S and CYAS; bottom row left to right, MEA, reverse M40Y, M60Y and DG18. B, E. Conidiophores. C, D. Ascomata. F, I. Ascospores. G, H. Conidia. Scale bars: B, C = 20 μm; D = 250 μm; E–G = 10 μm; H, I = 2 μm.
Fig. 21
Fig. 21
Aspergillus brunneus CBS 112.26T. A. Colonies after 7 d at 25 °C: top row left to right, CYA, M40Y, CY20S and CYAS; bottom row left to right, MEA, reverse M40Y, M60Y and DG18. B, E. Conidiophores. C, D. Ascomata. F, I. Ascospores. G, H. Conidia. Scale bars: B, C = 20 μm; D = 250 μm; E–G = 10 μm; H, I = 2 μm.
Fig. 22
Fig. 22
Aspergillus caperatus CBS 141774T. A. Colonies after 7 d at 25 °C: top row left to right, CYA, M40Y, CY20S and CYAS; bottom row left to right, MEA, reverse M40Y, M60Y and DG18. B, E. Conidiophores. C, D. Ascomata. F, I. Ascospores. G, H. Conidia. Scale bars: B, C = 20 μm; D = 250 μm; E–G = 10 μm; H, I = 2 μm.
Fig. 23
Fig. 23
Aspergillus chevalieri CBS 522.65T. A. Colonies after 7 d at 25 °C: top row left to right, CYA, M40Y, CY20S and CYAS; bottom row left to right, MEA, reverse M40Y, M60Y and DG18. B, E. Conidiophores. C, D. Ascomata. F, I. Ascospores. G, H. Conidia. Scale bars: B, C = 20 μm; D = 250 μm; E–G = 10 μm; H, I = 2 μm.
Fig. 24
Fig. 24
Aspergillus cibarius KACC 46346T. A. Colonies after 7 d at 25 °C: top row left to right, CYA, M40Y, CY20S and CYAS; bottom row left to right, MEA, reverse M40Y, M60Y and DG18. B, E. Conidiophores. C, D. Ascomata. F, I. Ascospores. G, H. Conidia. Scale bars: B, C = 20 μm; D = 250 μm; E–G = 10 μm; H, I = 2 μm.
Fig. 25
Fig. 25
Aspergillus costiformis CBS 101749T. A. Colonies after 7 d at 25 °C: top row left to right, CYA, M40Y, CY20S and CYAS; bottom row left to right, MEA, reverse M40Y, M60Y and DG18. B, E. Conidiophores. C, D. Ascomata. F, I. Ascospores. G, H. Conidia. Scale bars: B, C = 20 μm; D = 250 μm; E–G = 10 μm; H, I = 2 μm.
Fig. 26
Fig. 26
Aspergillus cristatus CBS 123.53T. A. Colonies after 7 d at 25 °C: top row left to right, CYA, M40Y, CY20S and CYAS; bottom row left to right, MEA, reverse M40Y, M60Y and DG18. B, E. Conidiophores. C, D. Ascomata. F, I. Ascospores. G, H. Conidia. Scale bars: B, C = 20 μm; D = 250 μm; E–G = 10 μm; H, I = 2 μm.
Fig. 27
Fig. 27
Aspergillus cumulatus KACC 47316T. A. Colonies after 7 d at 25 °C: top row left to right, CYA, M40Y, CY20S and CYAS; bottom row left to right, MEA, reverse M40Y, M60Y and DG18. B, E. Conidiophores. C, D. Ascomata. F, I. Ascospores. G, H. Conidia. Scale bars: B, C = 20 μm; D = 250 μm; E–G = 10 μm; H, I = 2 μm.
Fig. 28
Fig. 28
Aspergillus endophyticus CBS 141766T. A. Colonies: top row left to right, CYA, M40Y, CY20S and CYAS; bottom row left to right, MEA, reverse M40Y, M60Y and DG18. B, E. Conidiophores. C, D. Ascomata. F, I. Ascospores. G, H. Conidia. Scale bars: B, C = 20 μm; D = 250 μm; E–G = 10 μm; H, I = 2 μm.
Fig. 29
Fig. 29
Aspergillus glaucus CBS 516.65T. A. Colonies after 7 d at 25 °C: top row left to right, CYA, M40Y, CY20S and CYAS; bottom row left to right, MEA, reverse M40Y, M60Y and DG18. B, E. Conidiophores. C, D. Ascomata. F, I. Ascospores. G, H. Conidia. Scale bars: B, C = 20 μm; D = 250 μm; E–G = 10 μm; H, I = 2 μm.
Fig. 30
Fig. 30
Aspergillus intermedius CBS 523.65T. A. Colonies after 7 d at 25 °C: top row left to right, CYA, M40Y, CY20S and CYAS; bottom row left to right, MEA, reverse M40Y, M60Y and DG18. B, E. Conidiophores. C, D. Ascomata. F, I. Ascospores. G, H. Conidia. Scale bars: B, C = 20 μm; D = 250 μm; E–G = 10 μm; H, I = 2 μm.
Fig. 31
Fig. 31
Aspergillus leucocarpus CBS 353.68T. A. Colonies after 7 d at 25 °C: top row left to right, CYA, M40Y, CY20S and CYAS; bottom row left to right, MEA, reverse M40Y, M60Y and DG18. B, E. Conidiophores. C, D. Ascomata. F, I. Ascospores. G, H. Conidia. Scale bars: B, C = 20 μm; D = 250 μm; E–G = 10 μm; H, I = 2 μm.
Fig. 32
Fig. 32
Aspergillus levisporus CBS 141767T. A. Colonies after 7 d at 25 °C: top row left to right, CYA, M40Y, CY20S and CYAS; bottom row left to right, MEA, reverse M40Y, M60Y and DG18. B, E. Conidiophores. C, D. Ascomata. F, I. Ascospores. G, H. Conidia. Scale bars: B, C = 20 μm; D = 250 μm; E–G = 10 μm; H, I = 2 μm.
Fig. 33
Fig. 33
Aspergillus mallochii CBS 141928T. A. Colonies after 7 d at 25 °C: top row left to right, CYA, M40Y, CY20S and CYAS; bottom row left to right, MEA, reverse M40Y, M60Y and DG18. B, E. Conidiophores. C, D. Ascomata. F, I. Ascospores. G, H. Conidia. Scale bars: B, C = 20 μm; D = 250 μm; E–G = 10 μm; H, I = 2 μm.
Fig. 34
Fig. 34
Aspergillus megasporus CBS 141929T. A. Colonies after 7 d at 25 °C: top row left to right, CYA, M40Y, CY20S and CYAS; bottom row left to right, MEA, reverse M40Y, M60Y and DG18. B, E. Conidiophores. C, D. Ascomata. F, I. Ascospores. G, H. Conidia. Scale bars: B, C = 20 μm; D = 250 μm; E–G = 10 μm; H, I = 2 μm.
Fig. 35
Fig. 35
Aspergillus montevidensis CBS 491.65T. A. Colonies after 7 d at 25 °C: top row left to right, CYA, M40Y, CY20S and CYAS; bottom row left to right, MEA, reverse M40Y, M60Y and DG18. B, E. Conidiophores. C, D. Ascomata. F, I. Ascospores. G, H. Conidia. Scale bars: B, C = 20 μm; D = 250 μm; E–G = 10 μm; H, I = 2 μm.
Fig. 36
Fig. 36
Aspergillus neocarnoyi CBS 471.65T. A. Colonies: top row left to right, CYA, M40Y, CY20S and CYAS; bottom row left to right, MEA, reverse M40Y, M60Y and DG18. B, E. Conidiophores. C, D. Ascomata. F, I. Ascospores. G, H. Conidia. Scale bars: B, C = 20 μm; D = 250 μm; E–G = 10 μm; H, I = 2 μm.
Fig. 37
Fig. 37
Aspergillus niveoglaucus CBS 114.27T. A. Colonies after 7 d at 25 °C: top row left to right, CYA, M40Y, CY20S and CYAS; bottom row left to right, MEA, reverse M40Y, M60Y and DG18. B, E. Conidiophores. C, D. Ascomata. F, I. Ascospores. G, H. Conidia. Scale bars: B, C = 20 μm; D = 250 μm; E–G = 10 μm; H, I = 2 μm.
Fig. 38
Fig. 38
Aspergillus osmophilus CBS 134258T. A. Colonies after 7 d at 25 °C: top row left to right, CYA, M40Y, CY20S and CYAS; bottom row left to right, MEA, reverse M40Y, M60Y and DG18. B, E. Conidiophores. C, D. Ascomata. F, I. Ascospores. G, H. Conidia. Scale bars: B, C = 20 μm; D = 250 μm; E–G = 10 μm; H, I = 2 μm.
Fig. 39
Fig. 39
Aspergillus porosus CBS 141770T. A. Colonies: top row left to right, CYA, M40Y, CY20S and CYAS; bottom row left to right, MEA, reverse M40Y, M60Y and DG18. B, E. Conidiophores. C, D. Ascomata. F, I. Ascospores. G, H. Conidia. Scale bars: B, C = 20 μm; D = 250 μm; E–G = 10 μm; H, I = 2 μm.
Fig. 40
Fig. 40
Aspergillus proliferans CBS 121.45T. A. Colonies after 7 d at 25 °C: top row left to right, CYA, M40Y, CY20S and CYAS; bottom row left to right, MEA, reverse M40Y, M60Y and DG18. B, C, F. Conidiophores. D, G. Conidia. E. Ascomata initials. Scale bars: B = 20 μm; C–E = 10 μm; F = 20 μm; G = 2 μm.
Fig. 41
Fig. 41
Aspergillus proliferans DTO 322-A2. A. Colonies after 7 d at 25 °C: top row left to right, CYA, M40Y, CY20S and CYAS; bottom row left to right, MEA, reverse M40Y, M60Y and DG18. B, E. Conidiophores. C, D. Ascomata. F, I. Ascospores. G, H. Conidia. Scale bars: B, C = 20 μm; D = 250 μm; E–G = 10 μm; H, I = 2 μm.
Fig. 42
Fig. 42
Aspergillus pseudoglaucus CBS 101747. A. Colonies after 7 d at 25 °C: top row left to right, CYA, M40Y, CY20S and CYAS; bottom row left to right, MEA, reverse M40Y, M60Y and DG18. B, E. Conidiophores. C, D. Ascomata. F, I. Ascospores. G, H. Conidia. Scale bars: B, C = 20 μm; D = 250 μm; E–G = 10 μm; H, I = 2 μm.
Fig. 43
Fig. 43
Aspergillus ruber CBS 530.65T. A. Colonies after 7 d at 25 °C: top row left to right, CYA, M40Y, CY20S and CYAS; bottom row left to right, MEA, reverse M40Y, M60Y and DG18. B, E. Conidiophores. C, D. Ascomata. F, I. Ascospores. G, H. Conidia. Scale bars: B, C = 20 μm; D = 250 μm; E–G = 10 μm; H, I = 2 μm.
Fig. 44
Fig. 44
Aspergillus sloanii CBS 138177T. A. Colonies after 7 d at 25 °C: top row left to right, CYA, M40Y, CY20S and CYAS; bottom row left to right, MEA, reverse M40Y, M60Y and DG18. B, E. Conidiophores. C, D. Ascomata. F, I. Ascospores. G, H. Conidia. Scale bars: B, C = 20 μm; D = 250 μm; E–G = 10 μm; H, I = 2 μm.
Fig. 45
Fig. 45
Aspergillus tamarindosoli CBS 141775T. A. Colonies after 7 d at 25 °C: top row left to right, CYA, M40Y, CY20S and CYAS; bottom row left to right, MEA, reverse M40Y, M60Y and DG18. B, E. Conidiophores. C, D. Ascomata. F, I. Ascospores. G, H. Conidia. Scale bars: B, C = 20 μm; D = 250 μm; E–G = 10 μm; H, I = 2 μm.
Fig. 46
Fig. 46
Aspergillus teporis CBS 141768T. A. Colonies after 7 d at 25 °C: top row left to right, CYA, M40Y, CY20S and CYAS; bottom row left to right, MEA, reverse M40Y, M60Y and DG18. B, E. Conidiophores. C, D. Ascomata. F, I. Ascospores. G, H. Conidia. Scale bars: B, C = 20 μm; D = 250 μm; E–G = 10 μm; H, I = 2 μm.
Fig. 47
Fig. 47
Aspergillus tonophilus KACC 47150. A. Colonies after 7 d at 25 °C: top row left to right, CYA, M40Y, CY20S and CYAS; bottom row left to right, MEA, reverse M40Y, M60Y and DG18. B, E. Conidiophores. C, D. Ascomata. F, I. Ascospores. G, H. Conidia. Scale bars: B, C = 20 μm; D = 250 μm; E–G = 10 μm; H, I = 2 μm.
Fig. 48
Fig. 48
Aspergillus xerophilus CBS 938.73T. A. Colonies after 7 d at 25 °C: top row left to right, CYA, M40Y, CY20S and CYAS; bottom row left to right, MEA, reverse M40Y, M60Y and DG18. B, E. Conidiophores. C, D. Ascomata. F, I. Ascospores. G, H. Conidia. Scale bars: B, C = 20 μm; D = 250 μm; E–G = 10 μm; H, I = 2 μm.
Fig. 49
Fig. 49
Aspergillus zutongqii CBS 141773T. A. Colonies after 7 d at 25 °C: top row left to right, CYA, M40Y, CY20S and CYAS; bottom row left to right, MEA, reverse M40Y, M60Y and DG18. B, E. Conidiophores. C, D. Ascomata. F, I. Ascospores. G, H. Conidia. Scale bars: B, C = 20 μm; D = 250 μm; E–G = 10 μm; H, I = 2 μm.

Similar articles

See all similar articles

Cited by 9 articles

See all "Cited by" articles

References

    1. Abe K., Nagao Y., Nakada T. Assessment of indoor climate in an apartment by use of a fungal index. Applied and Environmental Microbiology. 1996;62:959–963. - PMC - PubMed
    1. Ahmed A.M., Ismail S.A., Abd-El-Rahman H.A. Quantitative, qualitative and toxigenic evaluations of xerophilic mold in traditional Egyptian salted fish, Molouha. Journal of Food Safety. 2005;25:9–18.
    1. Al-Julaifi M.Z. Ochratoxin A production by Eurotium amstelodami and Eurotium spp. isolated from locally grown barley in Saudi Arabia. Kuwait Journal of Science and Engineering. 2003;30:59–66.
    1. Allen C.M., Jr. Isoprene-containing metabolites of Aspergillus amstelodami. Canadian Journal of Microbiology. 1972;18:1275–1282. - PubMed
    1. Almeida A.P., Dethoup T., Singburaudom N. The in vitro anticancer activity of the crude extract of the sponge-associated fungus Eurotium cristatum and its secondary metabolites. Journal of Natural Pharmaceuticals. 2010;1:25–29.

LinkOut - more resources

Feedback