The Impact of Heterozygous KCNK3 Mutations Associated With Pulmonary Arterial Hypertension on Channel Function and Pharmacological Recovery
- PMID: 28889099
- PMCID: PMC5634293
- DOI: 10.1161/JAHA.117.006465
The Impact of Heterozygous KCNK3 Mutations Associated With Pulmonary Arterial Hypertension on Channel Function and Pharmacological Recovery
Abstract
Background: Heterozygous loss of function mutations in the KCNK3 gene cause hereditary pulmonary arterial hypertension (PAH). KCNK3 encodes an acid-sensitive potassium channel, which contributes to the resting potential of human pulmonary artery smooth muscle cells. KCNK3 is widely expressed in the body, and dimerizes with other KCNK3 subunits, or the closely related, acid-sensitive KCNK9 channel.
Methods and results: We engineered homomeric and heterodimeric mutant and nonmutant KCNK3 channels associated with PAH. Using whole-cell patch-clamp electrophysiology in human pulmonary artery smooth muscle and COS7 cell lines, we determined that homomeric and heterodimeric mutant channels in heterozygous KCNK3 conditions lead to mutation-specific severity of channel dysfunction. Both wildtype and mutant KCNK3 channels were activated by ONO-RS-082 (10 μmol/L), causing cell hyperpolarization. We observed robust gene expression of KCNK3 in healthy and familial PAH patient lungs, but no quantifiable expression of KCNK9, and demonstrated in functional studies that KCNK9 minimizes the impact of select KCNK3 mutations when the 2 channel subunits co-assemble.
Conclusions: Heterozygous KCNK3 mutations in PAH lead to variable loss of channel function via distinct mechanisms. Homomeric and heterodimeric mutant KCNK3 channels represent novel therapeutic substrates in PAH. Pharmacological and pH-dependent activation of wildtype and mutant KCNK3 channels in pulmonary artery smooth muscle cells leads to membrane hyperpolarization. Co-assembly of KCNK3 with KCNK9 subunits may provide protection against KCNK3 loss of function in tissues where both KCNK9 and KCNK3 are expressed, contributing to the lung-specific phenotype observed clinically in patients with PAH because of KCNK3 mutations.
Keywords: ion channel; pathophysiology; pharmacology; potassium channels; pulmonary hypertension.
© 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.
Figures
Similar articles
-
Potassium Channel Subfamily K Member 3 (KCNK3) Contributes to the Development of Pulmonary Arterial Hypertension.Circulation. 2016 Apr 5;133(14):1371-85. doi: 10.1161/CIRCULATIONAHA.115.020951. Epub 2016 Feb 24. Circulation. 2016. PMID: 26912814
-
Loss of KCNK3 is a hallmark of RV hypertrophy/dysfunction associated with pulmonary hypertension.Cardiovasc Res. 2018 May 1;114(6):880-893. doi: 10.1093/cvr/cvy016. Cardiovasc Res. 2018. PMID: 29360952
-
A novel channelopathy in pulmonary arterial hypertension.N Engl J Med. 2013 Jul 25;369(4):351-361. doi: 10.1056/NEJMoa1211097. N Engl J Med. 2013. PMID: 23883380 Free PMC article.
-
TASK-1 (KCNK3) channels in the lung: from cell biology to clinical implications.Eur Respir J. 2017 Nov 9;50(5):1700754. doi: 10.1183/13993003.00754-2017. Print 2017 Nov. Eur Respir J. 2017. PMID: 29122916 Review.
-
Potassium Channels as Therapeutic Targets in Pulmonary Arterial Hypertension.Biomolecules. 2022 Sep 22;12(10):1341. doi: 10.3390/biom12101341. Biomolecules. 2022. PMID: 36291551 Free PMC article. Review.
Cited by
-
The role of genomics and genetics in pulmonary arterial hypertension.Glob Cardiol Sci Pract. 2020 Apr 30;2020(1):e202013. doi: 10.21542/gcsp.2020.13. Glob Cardiol Sci Pract. 2020. PMID: 33150157 Free PMC article. Review. No abstract available.
-
KCNK3 Mutation Causes Altered Immune Function in Pulmonary Arterial Hypertension Patients and Mouse Models.Int J Mol Sci. 2021 May 9;22(9):5014. doi: 10.3390/ijms22095014. Int J Mol Sci. 2021. PMID: 34065088 Free PMC article.
-
Gain-of-function mutations in KCNK3 cause a developmental disorder with sleep apnea.Nat Genet. 2022 Oct;54(10):1534-1543. doi: 10.1038/s41588-022-01185-x. Epub 2022 Oct 4. Nat Genet. 2022. PMID: 36195757 Free PMC article.
-
Ion channels as convergence points in the pathology of pulmonary arterial hypertension.Biochem Soc Trans. 2021 Aug 27;49(4):1855-1865. doi: 10.1042/BST20210538. Biochem Soc Trans. 2021. PMID: 34346486 Free PMC article. Review.
-
Extracellular matrix degradation pathways and fatty acid metabolism regulate distinct pulmonary vascular cell types in pulmonary arterial hypertension.Pulm Circ. 2021 Mar 2;11(1):2045894021996190. doi: 10.1177/2045894021996190. eCollection 2021 Jan-Mar. Pulm Circ. 2021. PMID: 34408849 Free PMC article.
References
-
- Galie N, Humbert M, Vachiery JL, Gibbs S, Lang I, Torbicki A, Simonneau G, Peacock A, Vonk Noordegraaf A, Beghetti M, Ghofrani A, Gomez Sanchez MA, Hansmann G, Klepetko W, Lancellotti P, Matucci M, McDonagh T, Pierard LA, Trindade PT, Zompatori M, Hoeper M, Aboyans V, Vaz Carneiro A, Achenbach S, Agewall S, Allanore Y, Asteggiano R, Paolo Badano L, Albert Barbera J, Bouvaist H, Bueno H, Byrne RA, Carerj S, Castro G, Erol C, Falk V, Funck‐Brentano C, Gorenflo M, Granton J, Iung B, Kiely DG, Kirchhof P, Kjellstrom B, Landmesser U, Lekakis J, Lionis C, Lip GY, Orfanos SE, Park MH, Piepoli MF, Ponikowski P, Revel MP, Rigau D, Rosenkranz S, Voller H, Luis Zamorano J. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: the Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): endorsed by: association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur Heart J. 2016;37:67–119. - PubMed
-
- Olschewski A, Li Y, Tang B, Hanze J, Eul B, Bohle RM, Wilhelm J, Morty RE, Brau ME, Weir EK, Kwapiszewska G, Klepetko W, Seeger W, Olschewski H. Impact of TASK‐1 in human pulmonary artery smooth muscle cells. Circ Res. 2006;98:1072–1080. - PubMed
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
