The Role of Sirtuins in Antioxidant and Redox Signaling

Antioxid Redox Signal. 2018 Mar 10;28(8):643-661. doi: 10.1089/ars.2017.7290. Epub 2017 Oct 20.


Significance: Antioxidant and redox signaling (ARS) events are regulated by critical molecules that modulate antioxidants, reactive oxygen species (ROS) or reactive nitrogen species (RNS), and/or oxidative stress within the cell. Imbalances in these molecules can disturb cellular functions to become pathogenic. Sirtuins serve as important regulators of ARS in cells. Recent Advances: Sirtuins (SIRTs 1-7) are a family of nicotinamide adenine dinucleotide (NAD)-dependent histone deacetylases with the ability to deacetylate histone and nonhistone targets. Recent studies show that sirtuins modulate the regulation of a variety of cellular processes associated with ARS. SIRT1, SIRT3, and SIRT5 protect the cell from ROS, and SIRT2, SIRT6, and SIRT7 modulate key oxidative stress genes and mechanisms. Interestingly, SIRT4 has been shown to induce ROS production and has antioxidative roles as well.

Critical issues: A complete understanding of the roles of sirtuins in redox homeostasis of the cell is very important to understand the normal functioning as well as pathological manifestations. In this review, we have provided a critical discussion on the role of sirtuins in the regulation of ARS. We have also discussed mechanistic interactions among different sirtuins. Indeed, a complete understanding of sirtuin biology could be critical at multiple fronts.

Future directions: Sirtuins are emerging to be important in normal mammalian physiology and in a variety of oxidative stress-mediated pathological situations. Studies are needed to dissect the mechanisms of sirtuins in maintaining redox homeostasis. Efforts are also required to assess the targetability of sirtuins in the management of redox-regulated diseases. Antioxid. Redox Signal. 28, 643-661.

Keywords: antioxidants; oxidative stress; redox signaling; sirtuins.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review

MeSH terms

  • Antioxidants / metabolism*
  • Histones / metabolism
  • Humans
  • Mitochondria / genetics
  • Mitochondria / metabolism*
  • Oxidation-Reduction
  • Oxidative Stress / genetics
  • Signal Transduction
  • Sirtuins / classification
  • Sirtuins / genetics
  • Sirtuins / metabolism*


  • Antioxidants
  • Histones
  • Sirtuins