Genome-wide host RNA signatures of infectious diseases: discovery and clinical translation

Immunology. 2018 Feb;153(2):171-178. doi: 10.1111/imm.12841. Epub 2017 Oct 24.

Abstract

The use of whole blood gene expression to derive diagnostic biomarkers capable of distinguishing between phenotypically similar diseases holds great promise but remains a challenge. Differential gene expression analysis is used to identify the key genes that undergo changes in expression relative to healthy individuals, as well as to patients with other diseases. These key genes can act as diagnostic, prognostic and predictive markers of disease. Gene expression 'signatures' in the blood hold the potential to be used for the diagnosis of infectious diseases, where current diagnostics are unreliable, ineffective or of limited potential. For diagnostic tests based on RNA signatures to be useful clinically, the first step is to identify the minimum set of gene transcripts that accurately identify the disease in question. The second requirement is rapid and cost-effective detection of the gene expression levels. Signatures have been described for a number of infectious diseases, but 'clinic-ready' technologies for RNA detection from clinical samples are limited, though existing methods such as RT-PCR are likely to be superseded by a number of emerging technologies, which may form the basis of the translation of gene expression signatures into routine diagnostic tests for a range of disease states.

Keywords: bacterial; bioinformatics; infection; transcriptomics; viral.

Publication types

  • Review

MeSH terms

  • Animals
  • Biomarkers
  • Gene Expression Profiling / methods*
  • Genome-Wide Association Study / methods*
  • Humans
  • Infections / diagnosis
  • Infections / genetics*
  • Infections / immunology
  • RNA / genetics*
  • RNA / immunology
  • Reverse Transcriptase Polymerase Chain Reaction / methods*
  • Transcriptome / genetics
  • Transcriptome / immunology
  • Translational Medical Research / methods*

Substances

  • Biomarkers
  • RNA