An efficient Co3S4/CoP hybrid catalyst for electrocatalytic hydrogen evolution

Sci Rep. 2017 Sep 19;7(1):11891. doi: 10.1038/s41598-017-12332-4.

Abstract

The development of efficient, universal and inexpensive electrocatalysts for hydrogen evolution reaction (HER) is central to the area of sustainable energy conversion. Considering the Co-based sulfides/phosphides have the same catalytic mechanism with the hydrogenases occurring in nature. Here, a new catalyst based on Co3S4/CoP hybrid that is comprised entirely cheap and earthabundant elements, was first synthesized via a two-step method, the Co(CO3)0.5(OH)·0.11H2O precursor was prepared by a hydrothermal method, followed by phosphidation and sulphidation under Ar atmosphere simultaneously. The resulting Co3S4/CoP hybrid material possessed porous core-shell structure with a homogeneous element distribution and large electroactive surface area (~21.04 mF cm-2). More importantly, the nanostructured Co3S4/CoP electrode exhibits excellent HER properties in acid medium with a low onset overpotential of 34 mV, a small Tafel slope of 45 mV dec-1, as well as a large exchange current density of 150 μA cm-2. These results obtained in this study indicate that the Co3S4/CoP hybrid nanorod is promising replacement to the Pt-based catalysts for H2 production. Moreover, the synthetic method presented in this work can provide an efficient way to synthesis other nanocomposites.

Publication types

  • Research Support, Non-U.S. Gov't