A simple method to measure CLOCK-BMAL1 DNA binding activity in tissue and cell extracts

F1000Res. 2017 Aug 3:6:1316. doi: 10.12688/f1000research.11685.2. eCollection 2017.

Abstract

The proteins CLOCK and BMAL1 form a heterodimeric transcription factor essential to circadian rhythms in mammals. Daily rhythms of CLOCK-BMAL1 DNA binding activity are known to oscillate with target gene expression in vivo. Here we present a highly sensitive assay that recapitulates native CLOCK-BMAL1 DNA binding rhythms from crude tissue extracts, which we call the Clock Protein-DNA Binding Assay (CPDBA). This method can detect less than 2-fold differences in DNA binding activity, and can deliver results in two hours or less using 10 microliters (~10 micrograms) or less of crude extract, while requiring neither specialized equipment nor expensive probes. To demonstrate the sensitivity and versatility of this assay, we show that enzymatic removal of phosphate groups from proteins in tissue extracts or pharmacological inhibition of casein kinase I in cell culture increased CLOCK-BMAL1 DNA binding activity by ~1.5 to ~2 fold, as measured by the CPDBA. In addition, we show that the CPDBA can measure CLOCK-BMAL1 binding to reconstituted chromatin. The CPDBA is a sensitive, fast, efficient and versatile probe of clock function.

Keywords: BMAL1; CLOCK; DNA binding assay; chromatin; circadian clock; phosphorylation.