Gas adsorption capacity in an all carbon nanomaterial composed of carbon nanohorns and vertically aligned carbon nanotubes

Phys Chem Chem Phys. 2017 Oct 4;19(38):26265-26271. doi: 10.1039/c7cp05022d.

Abstract

Whereas vertically aligned carbon nanotubes (VACNTs) typically show a promising adsorption behavior at high pressures, carbon nanohorns (CNHs) exhibit superior gas adsorption properties in the low pressure regime due to their inherent microporosity. These adsorption characteristics are further enhanced when both materials are opened at their tips. The so prepared composite material allows one to investigate the effect of physical entrapment of CO2 molecules within the specific adsorption sites of VACNTs composed of opened double walled carbon nanotubes (CNTs) and in specific adsorption sites created by spherically aggregated opened single walled carbon nanohorns. Combining 50 wt% of tip opened CNTs with tip opened CNHs increases the CO2 adsorption capacity of this material by ∼24% at 30 bar and 298 K compared to opened CNHs alone.