Loop Quantum Gravity
- PMID: 28937180
- PMCID: PMC5567241
- DOI: 10.12942/lrr-1998-1
Loop Quantum Gravity
Abstract
The problem of finding the quantum theory of the gravitational field, and thus understanding what is quantum spacetime, is still open. One of the most active of the current approaches is loop quantum gravity. Loop quantum gravity is a mathematically well-defined, non-perturbative and background independent quantization of general relativity, with its conventional matter couplings. Research in loop quantum gravity today forms a vast area, ranging from mathematical foundations to physical applications. Among the most significant results obtained are: (i)The computation of the physical spectra of geometrical quantities such as area and volume, which yields quantitative predictions on Planck-scale physics.(ii)A derivation of the Bekenstein-Hawking black hole entropy formula.(iii)An intriguing physical picture of the microstructure of quantum physical space, characterized by a polymer-like Planck scale discreteness. This discreteness emerges naturally from the quantum theory and provides a mathematically well-defined realization of Wheeler's intuition of a spacetime "foam". Long standing open problems within the approach (lack of a scalar product, over-completeness of the loop basis, implementation of reality conditions) have been fully solved. The weak part of the approach is the treatment of the dynamics: at present there exist several proposals, which are intensely debated. Here, I provide a general overview of ideas, techniques, results and open problems of this candidate theory of quantum gravity, and a guide to the relevant literature.
Figures
Similar articles
-
Loop Quantum Gravity.Living Rev Relativ. 2008;11(1):5. doi: 10.12942/lrr-2008-5. Epub 2008 Jul 15. Living Rev Relativ. 2008. PMID: 28179822 Free PMC article. Review.
-
Black holes in loop quantum gravity.Rep Prog Phys. 2017 Dec;80(12):126901. doi: 10.1088/1361-6633/aa7e14. Rep Prog Phys. 2017. PMID: 28696338
-
Quantum Gravity If Non-Locality Is Fundamental.Entropy (Basel). 2022 Apr 15;24(4):554. doi: 10.3390/e24040554. Entropy (Basel). 2022. PMID: 35455217 Free PMC article.
-
Discreteness Unravels the Black Hole Information Puzzle: Insights from a Quantum Gravity Toy Model.Entropy (Basel). 2023 Oct 25;25(11):1479. doi: 10.3390/e25111479. Entropy (Basel). 2023. PMID: 37998171 Free PMC article.
-
A short review of loop quantum gravity.Rep Prog Phys. 2021 Mar 31;84(4). doi: 10.1088/1361-6633/abed91. Rep Prog Phys. 2021. PMID: 33691292 Review.
Cited by
-
Memory for the Future: Psychodynamic Approach to Time and Self Through the Default Network.Front Hum Neurosci. 2022 Jun 16;16:885315. doi: 10.3389/fnhum.2022.885315. eCollection 2022. Front Hum Neurosci. 2022. PMID: 35782047 Free PMC article.
-
Quantum gravitational decoherence from fluctuating minimal length and deformation parameter at the Planck scale.Nat Commun. 2021 Jul 22;12(1):4449. doi: 10.1038/s41467-021-24711-7. Nat Commun. 2021. PMID: 34294717 Free PMC article.
-
Extended harmonic mapping connects the equations in classical, statistical, fluid, quantum physics and general relativity.Sci Rep. 2020 Oct 26;10(1):18281. doi: 10.1038/s41598-020-75211-5. Sci Rep. 2020. PMID: 33106593 Free PMC article.
-
A non-static quantum inspired spacetime in f(R) gravity: Gravity's rainbow.Nucl Phys B. 2020 Jul;956:115014. doi: 10.1016/j.nuclphysb.2020.115014. Epub 2020 Apr 10. Nucl Phys B. 2020. PMID: 32372845 Free PMC article.
-
From curved spacetime to spacetime-dependent local unitaries over the honeycomb and triangular Quantum Walks.Sci Rep. 2019 Jul 29;9(1):10904. doi: 10.1038/s41598-019-47535-4. Sci Rep. 2019. PMID: 31358874 Free PMC article.
References
-
- Agishtein M, Migdal A. “Critical behavior of dynamically triangulated quantum gravity in 4 dimensions”. Nucl. Phys. 1992;385:395–412. doi: 10.1016/0550-3213(92)90106-L. - DOI
-
- Albert Einstein Institute, “Max Planck Institute for Gravitational Physics”, (1997), [Online HTML Document]: cited on 29 September 1997, http://www.aei-potsdam.mpg.de/. 4
-
- Amati D, Ciafaloni M, Veneziano G. “Superstring collisions at Planckian energies”. Phys. Lett. B. 1987;197:81–88. doi: 10.1016/0370-2693(87)90346-7. - DOI
-
- Amati D, Ciafaloni M, Veneziano G. “Classical and quantum gravity eflects from Planckian energy superstring collisions”. Int. J. Mod. Phys. 1988;3:1615–1661. doi: 10.1142/S0217751X88000710. - DOI
-
- Amati D, Ciafaloni M, Veneziano G. “Can spacetime be probed below the string size?”. Phys. Lett. B. 1989;216:41–47. doi: 10.1016/0370-2693(89)91366-X. - DOI
Publication types
LinkOut - more resources
Full Text Sources