Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
, 8 (1), 44

Semantic Annotation in Biomedicine: The Current Landscape

Affiliations
Review

Semantic Annotation in Biomedicine: The Current Landscape

Jelena Jovanović et al. J Biomed Semantics.

Abstract

The abundance and unstructured nature of biomedical texts, be it clinical or research content, impose significant challenges for the effective and efficient use of information and knowledge stored in such texts. Annotation of biomedical documents with machine intelligible semantics facilitates advanced, semantics-based text management, curation, indexing, and search. This paper focuses on annotation of biomedical entity mentions with concepts from relevant biomedical knowledge bases such as UMLS. As a result, the meaning of those mentions is unambiguously and explicitly defined, and thus made readily available for automated processing. This process is widely known as semantic annotation, and the tools that perform it are known as semantic annotators.Over the last dozen years, the biomedical research community has invested significant efforts in the development of biomedical semantic annotation technology. Aiming to establish grounds for further developments in this area, we review a selected set of state of the art biomedical semantic annotators, focusing particularly on general purpose annotators, that is, semantic annotation tools that can be customized to work with texts from any area of biomedicine. We also examine potential directions for further improvements of today's annotators which could make them even more capable of meeting the needs of real-world applications. To motivate and encourage further developments in this area, along the suggested and/or related directions, we review existing and potential practical applications and benefits of semantic annotators.

Keywords: Biomedical ontologies; Biomedical text mining; Natural language processing (NLP); Semantic annotation; Semantic technologies.

Conflict of interest statement

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Similar articles

See all similar articles

Cited by 7 articles

See all "Cited by" articles

References

    1. Fleuren WWM, Alkema W. Application of text mining in the biomedical domain. Methods. 2015;74:97–106. doi: 10.1016/j.ymeth.2015.01.015. - DOI - PubMed
    1. Sinsky C, Colligan L, Li L, Prgomet M, Reynolds S, Goeders L, et al. Allocation of Physician Time in Ambulatory Practice: A Time and Motion Study in 4 Specialties. Ann Intern Med. 2016;165(11):753–760. doi: 10.7326/M16-0961. - DOI - PubMed
    1. Hill RG, Sears LM, Melanson SW. 4000 Clicks: a productivity analysis of electronic medical records in a community hospital ED. Am J Emerg Med. 2013;31(11):1591–1594. doi: 10.1016/j.ajem.2013.06.028. - DOI - PubMed
    1. Savova GK, Masanz JJ, Ogren PV, Zheng J, Sohn S, Kipper-Schuler KC, Chute CG. Mayo clinical Text Analysis and Knowledge Extraction System (cTAKES): architecture, component evaluation and applications. J Am Med Inform Assoc. 2010;17(5):507–513. doi: 10.1136/jamia.2009.001560. - DOI - PMC - PubMed
    1. Demner-Fushman D, Seckman C, Fisher C, Hauser SE, Clayton J, Thoma GR. A Prototype System to Support Evidence-based Practice. In: Proceedings of the 2008 Annual Symposium of the American Medical Information Association (AMIA 2008). Washington, DC; 2008. p. 151–5. - PMC - PubMed

LinkOut - more resources

Feedback