Effects of co-composting of farm manure and biochar on plant growth and carbon mineralization in an alkaline soil

Environ Sci Pollut Res Int. 2017 Nov;24(33):26060-26068. doi: 10.1007/s11356-017-0227-4. Epub 2017 Sep 24.

Abstract

In the present study, the effects of co-composts of biochar (BC) and farm manure (FM) on the growth of wheat (Triticum aestivum L.) and carbon mineralization in an alkaline soil were investigated. The co-composts of FM and BC were prepared at various ratios (FM100:BC0, FM75:BC25, FM50:BC50, FM25:BC75, FM0:BC100) using aboveground piles and were used in two separate experiments conducted simultaneously. In the plant growth trial, prepared co-composts were applied at a rate of 2% w/w and wheat was grown at two fertilizer levels (half and full) until maturity. In the incubation experiment, same treatments were used and carbon mineralization was studied over a period of 79 days. The priming effect and net CO2 efflux were calculated using CO2 release data. Analysis of postincubation soil showed no significant effect of treatments on the pH of soil. However, electrical conductivity and organic matter were significantly influenced by all treatments. The increasing BC ratio in the compost reduced the carbon mineralization in soil in a dose-additive manner. Increase in BC proportion in composts (FM50:BC50, FM25:BC75, FM0:BC100) stabilized the native carbon of the soil and caused negative priming effect (-1.9, -5.6, and -8.48%, respectively). Regarding plant growth, the results showed an enhancement in the grain yield with the application of compost than control. Total nitrogen (N), phosphorus, and potassium (K) contents of the soil were also increased by the application of compost than control (un-amended soil). Significantly higher N and K concentrations in wheat plants were also examined when soil was treated with compost than control. The use of compost with half fertilizer was better in increasing grain yield, especially with higher BC proportion in the compost than FM.

Keywords: Carbon sequestration; Organic amendments; Pyrolysis; Wheat.

MeSH terms

  • Carbon / metabolism*
  • Carbon Cycle
  • Charcoal*
  • Composting*
  • Farms
  • Fertilizers / analysis
  • Manure*
  • Soil / chemistry*
  • Triticum / growth & development

Substances

  • Fertilizers
  • Manure
  • Soil
  • biochar
  • Charcoal
  • Carbon