This investigation was performed to assess the effects of sonication on the structure of protein, extractability of phenolics, and biological properties of isolated proteins and protein co-precipitates prepared from brewers' spent grain and soybean flour. Scanning electron micrographs revealed that the sonicated protein isolates and co-precipitates had different microstructures with fewer aggregates and smaller particles down to the nanometer scale compared to non-sonicated samples. However, the levels of free and bound phenolics extracted from non-sonicated protein isolates and protein co-precipitates increased compared to sonicated samples. The bound phenolics extracted after acid hydrolysis of sonicated protein co-precipitates showed improved ACE inhibitory activity and diminished antioxidant potency compared to non-sonicated samples. However, the free phenolics extracted from sonicated protein co-precipitates showed decreased ACE inhibitory activity and increased antioxidant activities compared to non-sonicated samples. The free and bound phenolics extracted from sonicated protein co-precipitates showed increased alpha-amylase inhibitory activity compared to non-sonicated samples.
Keywords: Biological properties; Bound phenolics; Co-precipitates; Correlations; Free phenolics; Nano technology; Sonication.
Copyright © 2017 Elsevier Ltd. All rights reserved.