Ultrathin high band gap solar cells with improved efficiencies from the world's oldest photovoltaic material
- PMID: 28947765
- PMCID: PMC5613033
- DOI: 10.1038/s41467-017-00582-9
Ultrathin high band gap solar cells with improved efficiencies from the world's oldest photovoltaic material
Abstract
Selenium was used in the first solid state solar cell in 1883 and gave early insights into the photoelectric effect that inspired Einstein's Nobel Prize work; however, the latest efficiency milestone of 5.0% was more than 30 years ago. The recent surge of interest towards high-band gap absorbers for tandem applications led us to reconsider this attractive 1.95 eV material. Here, we show completely redesigned selenium devices with improved back and front interfaces optimized through combinatorial studies and demonstrate record open-circuit voltage (V OC) of 970 mV and efficiency of 6.5% under 1 Sun. In addition, Se devices are air-stable, non-toxic, and extremely simple to fabricate. The absorber layer is only 100 nm thick, and can be processed at 200 ˚C, allowing temperature compatibility with most bottom substrates or sub-cells. We analyze device limitations and find significant potential for further improvement making selenium an attractive high-band-gap absorber for multi-junction device applications.Wide band gap semiconductors are important for the development of tandem photovoltaics. By introducing buffer layers at the front and rear side of solar cells based on selenium; Todorov et al., reduce interface recombination losses to achieve photoconversion efficiencies of 6.5%.
Conflict of interest statement
The authors declare no competing financial interests.
Figures
Similar articles
-
Critical interfaces in organic solar cells and their influence on the open-circuit voltage.Acc Chem Res. 2009 Nov 17;42(11):1758-67. doi: 10.1021/ar900139v. Acc Chem Res. 2009. PMID: 19708653
-
Tandem Solar Cells from Solution-Processed CdTe and PbS Quantum Dots Using a ZnTe-ZnO Tunnel Junction.Nano Lett. 2017 Feb 8;17(2):1020-1027. doi: 10.1021/acs.nanolett.6b04423. Epub 2017 Jan 13. Nano Lett. 2017. PMID: 28068765
-
High Efficiency Tandem Thin-Perovskite/Polymer Solar Cells with a Graded Recombination Layer.ACS Appl Mater Interfaces. 2016 Mar 23;8(11):7070-6. doi: 10.1021/acsami.5b12740. Epub 2016 Mar 14. ACS Appl Mater Interfaces. 2016. PMID: 26918708
-
Photovoltaic and photoelectrochemical conversion of solar energy.Philos Trans A Math Phys Eng Sci. 2007 Apr 15;365(1853):993-1005. doi: 10.1098/rsta.2006.1963. Philos Trans A Math Phys Eng Sci. 2007. PMID: 17272237 Review.
-
Current challenges in organic photovoltaic solar energy conversion.Top Curr Chem. 2012;312:175-212. doi: 10.1007/128_2011_219. Top Curr Chem. 2012. PMID: 21837556 Review.
Cited by
-
KI mediated one-pot cascade reaction for synthesis of 1,3,4-selenadiazoles.RSC Adv. 2024 May 13;14(22):15449-15454. doi: 10.1039/d4ra01994f. eCollection 2024 May 10. RSC Adv. 2024. PMID: 38741970 Free PMC article.
-
Possible top cells for next-generation Si-based tandem solar cells.Front Optoelectron. 2020 Sep;13(3):246-255. doi: 10.1007/s12200-020-1050-y. Epub 2020 Jul 20. Front Optoelectron. 2020. PMID: 36641575 Free PMC article. Review.
-
Fabrication and characterization of ZnO/Se1-xTex solar cells.Front Optoelectron. 2022 Sep 8;15(1):36. doi: 10.1007/s12200-022-00040-5. Front Optoelectron. 2022. PMID: 36637622 Free PMC article.
-
Indoor photovoltaics awaken the world's first solar cells.Sci Adv. 2022 Dec 9;8(49):eadc9923. doi: 10.1126/sciadv.adc9923. Epub 2022 Dec 7. Sci Adv. 2022. PMID: 36475800 Free PMC article.
-
Solid-State Fluorescent Selenium Quantum Dots by a Solvothermal-Assisted Sol-Gel Route for Curcumin Sensing.ACS Omega. 2021 Aug 10;6(33):21525-21533. doi: 10.1021/acsomega.1c02441. eCollection 2021 Aug 24. ACS Omega. 2021. PMID: 34471755 Free PMC article.
References
-
- Smith W. Effect of light on selenium during the passage of an electric current. Nature. 1873;7:303. doi: 10.1038/007303b0. - DOI
-
- Fritts CE. On a new form of selenium cell, and some electrical discoveries made by its use. Am. J. Sci. 1883;26:465–472. doi: 10.2475/ajs.s3-26.156.465. - DOI
-
- Einstein A. Ueber einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristichen Gesichtspunkt. Ann. Phys. 1905;17:132–148. doi: 10.1002/andp.19053220607. - DOI
-
- Einstein, A. & Bucky, G. Light intensity self-adjusting camera. US patent US2058562 A (1936).
-
- Bidwell S. Tele-photography. Nature. 1881;23:344–346. doi: 10.1038/023344a0. - DOI
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous
