Selective attention without a neocortex
- PMID: 28958417
- PMCID: PMC5832524
- DOI: 10.1016/j.cortex.2017.08.026
Selective attention without a neocortex
Abstract
Selective attention refers to the ability to restrict neural processing and behavioral responses to a relevant subset of available stimuli, while simultaneously excluding other valid stimuli from consideration. In primates and other mammals, descriptions of this ability typically emphasize the neural processing that takes place in the cerebral neocortex. However, non-mammals such as birds, reptiles, amphibians and fish, which completely lack a neocortex, also have the ability to selectively attend. In this article, we survey the behavioral evidence for selective attention in non-mammals, and review the midbrain and forebrain structures that are responsible. The ancestral forms of selective attention are presumably selective orienting behaviors, such as prey-catching and predator avoidance. These behaviors depend critically on a set of subcortical structures, including the optic tectum (OT), thalamus and striatum, that are highly conserved across vertebrate evolution. In contrast, the contributions of different pallial regions in the forebrain to selective attention have been subject to more substantial changes and reorganization. This evolutionary perspective makes plain that selective attention is not a function achieved de novo with the emergence of the neocortex, but instead is implemented by circuits accrued and modified over hundreds of millions of years, beginning well before the forebrain contained a neocortex. Determining how older subcortical circuits interact with the more recently evolved components in the neocortex will likely be crucial for understanding the complex properties of selective attention in primates and other mammals, and for identifying the etiology of attention disorders.
Keywords: Attention; Evolution; Neocortex; Optic tectum; Striatum; Thalamus.
Published by Elsevier Ltd.
Figures
Similar articles
-
The role of the dorsal thalamus in visual processing and object selection: a case of an attentional system in amphibians.Eur J Neurosci. 2012 Dec;36(11):3459-70. doi: 10.1111/j.1460-9568.2012.08271.x. Epub 2012 Aug 31. Eur J Neurosci. 2012. PMID: 22934985
-
Lesions of the dorsal striatum impair orienting behaviour of salamanders without affecting visual processing in the tectum.Eur J Neurosci. 2016 Oct;44(8):2581-2592. doi: 10.1111/ejn.13375. Epub 2016 Sep 5. Eur J Neurosci. 2016. PMID: 27545109
-
Evolution of neural processing for visual perception in vertebrates.J Comp Neurol. 2020 Dec 1;528(17):2888-2901. doi: 10.1002/cne.24871. Epub 2020 Feb 13. J Comp Neurol. 2020. PMID: 32003466 Free PMC article. Review.
-
Brainstem control of orienting movements: intrinsic coordinate systems and underlying circuitry.Brain Behav Evol. 1992;40(2-3):98-111. doi: 10.1159/000113906. Brain Behav Evol. 1992. PMID: 1422810 Review.
-
The role of the optic tectum for visually evoked orienting and evasive movements.Proc Natl Acad Sci U S A. 2019 Jul 23;116(30):15272-15281. doi: 10.1073/pnas.1907962116. Epub 2019 Jul 11. Proc Natl Acad Sci U S A. 2019. PMID: 31296565 Free PMC article.
Cited by
-
Attention-related modulation of caudate neurons depends on superior colliculus activity.Elife. 2020 Sep 17;9:e53998. doi: 10.7554/eLife.53998. Elife. 2020. PMID: 32940607 Free PMC article.
-
"Shepherd's crook" neurons drive and synchronize the enhancing and suppressive mechanisms of the midbrain stimulus selection network.Proc Natl Acad Sci U S A. 2018 Aug 7;115(32):E7615-E7623. doi: 10.1073/pnas.1804517115. Epub 2018 Jul 19. Proc Natl Acad Sci U S A. 2018. PMID: 30026198 Free PMC article.
-
Subcortical connectivity correlates selectively with attention's effects on spatial choice bias.Proc Natl Acad Sci U S A. 2019 Sep 24;116(39):19711-19716. doi: 10.1073/pnas.1902704116. Epub 2019 Sep 6. Proc Natl Acad Sci U S A. 2019. PMID: 31492811 Free PMC article.
-
Awareness and consciousness in humans and animals - neural and behavioral correlates in an evolutionary perspective.Front Syst Neurosci. 2022 Jul 14;16:941534. doi: 10.3389/fnsys.2022.941534. eCollection 2022. Front Syst Neurosci. 2022. PMID: 35910003 Free PMC article.
-
Unraveling circuits of visual perception and cognition through the superior colliculus.Neuron. 2021 Mar 17;109(6):918-937. doi: 10.1016/j.neuron.2021.01.013. Epub 2021 Feb 5. Neuron. 2021. PMID: 33548173 Free PMC article. Review.
References
-
- Asadollahi A, Mysore SP, Knudsen EI. Rules of competitive stimulus selection in a cholinergic isthmic nucleus of the owl midbrain. Journal of Neuroscience. 2011;31(16):6088–6097. http://doi.org/10.1523/JNEUROSCI.0023-11.2011. - DOI - PMC - PubMed
-
- Barker AJ, Baier H. Sensorimotor decision making in the zebrafish tectum. Curr Biol. 2015;25(21):2804–2814. http://doi.org/10.1016/j.cub.2015.09.055. - DOI - PubMed
-
- Bass AH. Effects of lesions of the optic tectum on the ability of turtles to locate food stimuli. Brain Behav Evol. 1977;14(4):251–260. - PubMed
-
- Ben-Tov M, Donchin O, Ben-Shahar O, Segev R. Pop-out in visual search of moving targets in the archer fish. Nature Communications. 2015;6:6476. http://doi.org/10.1038/ncomms7476. - DOI - PubMed
-
- Ben-Tov M, Kopilevich I, Donchin O, Ben-Shahar O, Giladi C, Segev R. Visual receptive field properties of cells in the optic tectum of the archer fish. Journal of Neurophysiology. 2013;110(3):748–759. http://doi.org/10.1152/jn.00094.2013. - DOI - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
