Substitution of Aromatic Residues with Polar Residues in the Active Site Pocket of epi-Isozizaene Synthase Leads to the Generation of New Cyclic Sesquiterpenes

Biochemistry. 2017 Oct 31;56(43):5798-5811. doi: 10.1021/acs.biochem.7b00895. Epub 2017 Oct 17.

Abstract

The sesquiterpene cyclase epi-isozizaene synthase (EIZS) catalyzes the cyclization of farnesyl diphosphate to form the tricyclic hydrocarbon precursor of the antibiotic albaflavenone. The hydrophobic active site pocket of EIZS serves as a template as it binds and chaperones the flexible substrate and carbocation intermediates through the conformations required for a multistep reaction sequence. We previously demonstrated that the substitution of hydrophobic residues with other hydrophobic residues remolds the template and expands product chemodiversity [Li, R., Chou, W. K. W., Himmelberger, J. A., Litwin, K. M., Harris, G. G., Cane, D. E., and Christianson, D. W. (2014) Biochemistry 53, 1155-1168]. Here, we show that the substitution of hydrophobic residues-specifically, Y69, F95, F96, and W203-with polar side chains also yields functional enzyme catalysts that expand product chemodiversity. Fourteen new EIZS mutants are reported that generate product arrays in which eight new sesquiterpene products have been identified. Of note, some mutants generate acyclic and cyclic hydroxylated products, suggesting that the introduction of polarity in the hydrophobic pocket facilitates the binding of water capable of quenching carbocation intermediates. Furthermore, the substitution of polar residues for F96 yields high-fidelity sesquisabinene synthases. Crystal structures of selected mutants reveal that residues defining the three-dimensional contour of the hydrophobic pocket can be substituted without triggering significant structural changes elsewhere in the active site. Thus, more radical nonpolar-polar amino acid substitutions should be considered when terpenoid cyclase active sites are remolded by mutagenesis with the goal of exploring and expanding product chemodiversity.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, N.I.H., Extramural

MeSH terms

  • Amino Acid Substitution*
  • Bacterial Proteins / chemistry*
  • Bacterial Proteins / genetics
  • Bacterial Proteins / metabolism
  • Carbon-Carbon Lyases / chemistry*
  • Carbon-Carbon Lyases / genetics
  • Carbon-Carbon Lyases / metabolism
  • Catalytic Domain
  • Crystallography, X-Ray
  • Hydrophobic and Hydrophilic Interactions
  • Models, Molecular*
  • Mutation, Missense
  • Sesquiterpenes / chemistry
  • Sesquiterpenes / metabolism
  • Streptomyces coelicolor / enzymology*
  • Streptomyces coelicolor / genetics

Substances

  • Bacterial Proteins
  • Sesquiterpenes
  • Carbon-Carbon Lyases
  • trichodiene synthetase