miR-19b promotes breast cancer metastasis through targeting MYLIP and its related cell adhesion molecules

Oncotarget. 2017 Jul 17;8(38):64330-64343. doi: 10.18632/oncotarget.19278. eCollection 2017 Sep 8.


miR-19b is a key molecule for cancer development, however its crucial roles in breast cancer metastasis are rarely studied right now. In this study, using several bioinformatics databases to predict the downstream targets for miR-19b, we verified that a novel target gene, myosin regulatory light chain interacting protein (MYLIP), could be directly down-regulated by miR-19b through its 3'-UTR region. MYLIP belongs to the cytoskeletal protein clusters and is involved in the regulation of cell movement and migration. We further explored that miR-19b was highly expressed and negatively correlated with MYLIP expression in breast cancer patient samples from the TCGA database. And the over-expression of miR-19b or inhibition of MYLIP facilitated the migration and metastasis of breast cancer cells, through conducting the wound healing assay and transwell invasion assay. Additionally, miR-19b could obviously promote breast tumor growth in mouse models and affect the expressions of cell adhesion molecules (including E-Cadherin, ICAM-1 and Integrin β1) by down-regulating E-Cadherin expression and up-regulating ICAM-1 and Integrin β1 expressions in vitro and in vivo. Meanwhile, miR-19b effectively activated the Integrin β downstream signaling pathways (such as the Ras-MAPK pathway and the PI3K-AKT pathway) and elevated the expression levels of essential genes in these two pathways. Taken together, these findings comprehensively illustrate the regulatory mechanisms ofmiR-19b in breast cancer metastasis, and provide us new insights for exploring MYLIP and its related cell adhesion molecules as promising therapeutic targets to interfere breast cancer development.

Keywords: MYLIP; breast cancer; cell adhesion molecules; metastasis; miR-19b.