In roots of Arabidopsis thaliana, the damage-associated molecular pattern AtPep1 is a stronger elicitor of immune signalling than flg22 or the chitin heptamer
- PMID: 28973025
- PMCID: PMC5626561
- DOI: 10.1371/journal.pone.0185808
In roots of Arabidopsis thaliana, the damage-associated molecular pattern AtPep1 is a stronger elicitor of immune signalling than flg22 or the chitin heptamer
Abstract
Plants interpret their immediate environment through perception of small molecules. Microbe-associated molecular patterns (MAMPs) such as flagellin and chitin are likely to be more abundant in the rhizosphere than plant-derived damage-associated molecular patterns (DAMPs). We investigated how the Arabidopsis thaliana root interprets MAMPs and DAMPs as danger signals. We monitored root development during exposure to increasing concentrations of the MAMPs flg22 and the chitin heptamer as well as of the DAMP AtPep1. The tissue-specific expression of defence-related genes in roots was analysed using a toolkit of promoter::YFPN lines reporting jasmonic acid (JA)-, salicylic acid (SA)-, ethylene (ET)- and reactive oxygen species (ROS)- dependent signalling. Finally, marker responses were analysed during invasion by the root pathogen Fusarium oxysporum. The DAMP AtPep1 triggered a stronger activation of the defence markers compared to flg22 and the chitin heptamer. In contrast to the tested MAMPs, AtPep1 induced SA- and JA-signalling markers in the root and caused a severe inhibition of root growth. Fungal attack resulted in a strong activation of defence genes in tissues close to the invading fungal hyphae. The results collectively suggest that AtPep1 presents a stronger danger signal to the Arabidopsis root than the MAMPs flg22 and chitin heptamer.
Conflict of interest statement
Figures
Similar articles
-
The activated SA and JA signaling pathways have an influence on flg22-triggered oxidative burst and callose deposition.PLoS One. 2014 Feb 25;9(2):e88951. doi: 10.1371/journal.pone.0088951. eCollection 2014. PLoS One. 2014. PMID: 24586453 Free PMC article.
-
Innate immune responses activated in Arabidopsis roots by microbe-associated molecular patterns.Plant Cell. 2010 Mar;22(3):973-90. doi: 10.1105/tpc.109.069658. Epub 2010 Mar 26. Plant Cell. 2010. PMID: 20348432 Free PMC article.
-
Microbe-associated molecular patterns-triggered root responses mediate beneficial rhizobacterial recruitment in Arabidopsis.Plant Physiol. 2012 Nov;160(3):1642-61. doi: 10.1104/pp.112.200386. Epub 2012 Sep 12. Plant Physiol. 2012. PMID: 22972705 Free PMC article.
-
JAZ repressors and the orchestration of phytohormone crosstalk.Trends Plant Sci. 2012 Jan;17(1):22-31. doi: 10.1016/j.tplants.2011.10.006. Epub 2011 Nov 21. Trends Plant Sci. 2012. PMID: 22112386 Review.
-
DAMPs, MAMPs, and NAMPs in plant innate immunity.BMC Plant Biol. 2016 Oct 26;16(1):232. doi: 10.1186/s12870-016-0921-2. BMC Plant Biol. 2016. PMID: 27782807 Free PMC article. Review.
Cited by
-
Development specifies, diversifies and empowers root immunity.EMBO Rep. 2022 Dec 6;23(12):e55631. doi: 10.15252/embr.202255631. Epub 2022 Nov 4. EMBO Rep. 2022. PMID: 36330761 Free PMC article. Review.
-
Coordination of microbe-host homeostasis by crosstalk with plant innate immunity.Nat Plants. 2021 Jun;7(6):814-825. doi: 10.1038/s41477-021-00920-2. Epub 2021 May 24. Nat Plants. 2021. PMID: 34031541 Free PMC article.
-
Plant health: feedback effect of root exudates-rhizobiome interactions.Appl Microbiol Biotechnol. 2019 Feb;103(3):1155-1166. doi: 10.1007/s00253-018-9556-6. Epub 2018 Dec 20. Appl Microbiol Biotechnol. 2019. PMID: 30570692 Free PMC article. Review.
-
The WAK-like protein RFO1 acts as a sensor of the pectin methylation status in Arabidopsis cell walls to modulate root growth and defense.Mol Plant. 2023 May 1;16(5):865-881. doi: 10.1016/j.molp.2023.03.015. Epub 2023 Mar 31. Mol Plant. 2023. PMID: 37002606 Free PMC article.
-
Quantitative Hormone Signaling Output Analyses of Arabidopsis thaliana Interactions With Virulent and Avirulent Hyaloperonospora arabidopsidis Isolates at Single-Cell Resolution.Front Plant Sci. 2020 Nov 6;11:603693. doi: 10.3389/fpls.2020.603693. eCollection 2020. Front Plant Sci. 2020. PMID: 33240308 Free PMC article.
References
-
- Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM. The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol. 2006; 57(1):233–66. - PubMed
-
- Sloan SS, Lebeis SL. Exercising influence: distinct biotic interactions shape root microbiomes. Curr Opin Plant Biol. 2015; 26:32–6. doi: 10.1016/j.pbi.2015.05.026 - DOI - PubMed
-
- Vorholt JA. Microbial life in the phyllosphere. Nat Rev Microbiol. 2012; 10(12):828–40. doi: 10.1038/nrmicro2910 - DOI - PubMed
-
- Bulgarelli D, Schlaeppi K, Spaepen S, Ver Loren van Themaat E, Schulze-Lefert P. Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol. 2013; 64:807–38. doi: 10.1146/annurev-arplant-050312-120106 - DOI - PubMed
-
- Berendsen RL, Pieterse CM, Bakker PA. The rhizosphere microbiome and plant health. Trends Plant Sci. 2012; 17(8):478–86. doi: 10.1016/j.tplants.2012.04.001 - DOI - PubMed
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
