The Relationship between Lesion Severity Characterized by Diffusion Tensor Imaging and Motor Function in Chronic Canine Spinal Cord Injury

J Neurotrauma. 2018 Feb 1;35(3):500-507. doi: 10.1089/neu.2017.5255. Epub 2017 Nov 17.

Abstract

Lesion heterogeneity among chronically paralyzed dogs after acute, complete thoracolumbar spinal cord injury (TLSCI) is poorly described. We hypothesized that lesion severity quantified by diffusion tensor imaging (DTI) is associated with hindlimb motor function. Our objectives were to quantify lesion severity with fractional anisotropy (FA), mean diffusivity (MD), and tractography and investigate associations with motor function. Twenty-two dogs with complete TLSCI in the chronic stage were enrolled and compared with six control dogs. All underwent thoracolumbar magnetic resonance imaging (MRI) with DTI and gait analysis. FA and MD were calculated on regions of interest (ROI) at the lesion epicenter and cranial and caudal to the visible lesion on conventional MRI and in corresponding ROI in controls. Tractography was performed to detect translesional fibers. Gait was quantified using an ordinal scale (OFS). FA and MD values were compared between cases and controls, and relationships between FA, MD, presence of translesional fibers and OFS were investigated. The FA at the epicenter (median: 0.228, 0.107-0.320), cranial (median: 0.420, 0.391-0.561), and caudal to the lesion (median: 0.369, 0.265-0.513) was lower than combined ROI in controls (median: 0.602, 0.342-0.826, p < 0.0001). The MD at the epicenter (median: 2.06 × 10-3, 1.33-2.96 × 10-3) and cranially (median: 1.52 × 10-3, 1.03-1.87 × 10-3) was higher than combined ROI in controls (median: 1.28 × 10-3, 0.81-1.44 × 10-3, p ≤ 0.001). Four dogs had no translesional fibers. Median OFS was 2 (0-6). The FA at the lesion epicenter and presence of translesional fibers were associated with OFS (p ≤ 0.0299). DTI can detect degeneration and physical transection after severe TLSCI. Findings suggest DTI quantifies injury severity and suggests motor recovery in apparently complete dogs is because of supraspinal input.

Keywords: chronic paralysis; fractional anisotropy; magnetic resonance imaging; mean diffusivity; tractography.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Diffusion Tensor Imaging
  • Dogs
  • Image Processing, Computer-Assisted
  • Motor Activity / physiology*
  • Spinal Cord Injuries / veterinary*