Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals
- PMID: 28974302
- DOI: 10.1016/j.compbiomed.2017.09.017
Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals
Abstract
An encephalogram (EEG) is a commonly used ancillary test to aide in the diagnosis of epilepsy. The EEG signal contains information about the electrical activity of the brain. Traditionally, neurologists employ direct visual inspection to identify epileptiform abnormalities. This technique can be time-consuming, limited by technical artifact, provides variable results secondary to reader expertise level, and is limited in identifying abnormalities. Therefore, it is essential to develop a computer-aided diagnosis (CAD) system to automatically distinguish the class of these EEG signals using machine learning techniques. This is the first study to employ the convolutional neural network (CNN) for analysis of EEG signals. In this work, a 13-layer deep convolutional neural network (CNN) algorithm is implemented to detect normal, preictal, and seizure classes. The proposed technique achieved an accuracy, specificity, and sensitivity of 88.67%, 90.00% and 95.00%, respectively.
Keywords: Convolutional neural network; Deep learning; Encephalogram signals; Epilepsy; Seizure.
Copyright © 2017 Elsevier Ltd. All rights reserved.
Similar articles
-
Automated EEG-based screening of depression using deep convolutional neural network.Comput Methods Programs Biomed. 2018 Jul;161:103-113. doi: 10.1016/j.cmpb.2018.04.012. Epub 2018 Apr 18. Comput Methods Programs Biomed. 2018. PMID: 29852953
-
Epileptic seizure detection: a comparative study between deep and traditional machine learning techniques.J Integr Neurosci. 2020 Mar 30;19(1):1-9. doi: 10.31083/j.jin.2020.01.24. J Integr Neurosci. 2020. PMID: 32259881
-
Automatic seizure detection using three-dimensional CNN based on multi-channel EEG.BMC Med Inform Decis Mak. 2018 Dec 7;18(Suppl 5):111. doi: 10.1186/s12911-018-0693-8. BMC Med Inform Decis Mak. 2018. PMID: 30526571 Free PMC article.
-
Machine learning for detection of interictal epileptiform discharges.Clin Neurophysiol. 2021 Jul;132(7):1433-1443. doi: 10.1016/j.clinph.2021.02.403. Epub 2021 Apr 21. Clin Neurophysiol. 2021. PMID: 34023625 Review.
-
Automated seizure prediction.Epilepsy Behav. 2018 Nov;88:251-261. doi: 10.1016/j.yebeh.2018.09.030. Epub 2018 Oct 11. Epilepsy Behav. 2018. PMID: 30317059 Review.
Cited by
-
Novel ML-Based Algorithm for Detecting Seizures from Single-Channel EEG.NeuroSci. 2024 Feb 29;5(1):59-70. doi: 10.3390/neurosci5010004. eCollection 2024 Mar. NeuroSci. 2024. PMID: 39483809 Free PMC article.
-
Machine learning in neuroimaging: from research to clinical practice.Radiologie (Heidelb). 2022 Dec;62(Suppl 1):1-10. doi: 10.1007/s00117-022-01051-1. Epub 2022 Aug 31. Radiologie (Heidelb). 2022. PMID: 36044070 Free PMC article. Review.
-
Emotion recognition using effective connectivity and pre-trained convolutional neural networks in EEG signals.Cogn Neurodyn. 2022 Oct;16(5):1087-1106. doi: 10.1007/s11571-021-09756-0. Epub 2022 Jan 9. Cogn Neurodyn. 2022. PMID: 36237402 Free PMC article.
-
Expert-Level Intracranial Electroencephalogram Ictal Pattern Detection by a Deep Learning Neural Network.Front Neurol. 2021 May 3;12:603868. doi: 10.3389/fneur.2021.603868. eCollection 2021. Front Neurol. 2021. PMID: 34012415 Free PMC article.
-
Epileptic Seizures Detection Using Deep Learning Techniques: A Review.Int J Environ Res Public Health. 2021 May 27;18(11):5780. doi: 10.3390/ijerph18115780. Int J Environ Res Public Health. 2021. PMID: 34072232 Free PMC article. Review.
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Miscellaneous
