Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2017 Sep 19;8:1496.
doi: 10.3389/fpls.2017.01496. eCollection 2017.

Biology and Epidemiology of Venturia Species Affecting Fruit Crops: A Review

Affiliations
Free PMC article
Review

Biology and Epidemiology of Venturia Species Affecting Fruit Crops: A Review

Elisa González-Domínguez et al. Front Plant Sci. .
Free PMC article

Abstract

The fungal genus Venturia Sacc. (anamorph Fusicladium Bonord.) includes plant pathogens that cause substantial economic damage to fruit crops worldwide. Although Venturia inaequalis is considered a model species in plant pathology, other Venturia spp. also cause scab on other fruit trees. Relative to the substantial research that has been conducted on V. inaequalis and apple scab, little research has been conducted on Venturia spp. affecting other fruit trees. In this review, the main characteristics of plant-pathogenic species of Venturia are discussed with special attention to V. inaequalis affecting apple, V. pyrina affecting European pear, V. nashicola affecting Asian pear, V. carpophila affecting peach and almond, Fusicladium oleagineum affecting olive, F. effusum affecting pecan, and F. eriobotryae affecting loquat. This review has two main objectives: (i) to identify the main gaps in our knowledge regarding the biology and epidemiology of Venturia spp. affecting fruit trees; and (ii) to identify similarities and differences among these Venturia spp. in order to improve disease management. A thorough review has been conducted of studies regarding the phylogenetic relationships, host ranges, biologies, and epidemiologies of Venturia spp. A multiple correspondence analysis (CA) has also been performed on the main epidemiological components of these Venturia spp. CA separated the Venturia spp. into two main groups, according to their epidemiological behavior: the first group included V. inaequalis, V. pyrina, V. nashicola, and V. carpophila, the second F. oleagineum and F. eriobotryae, with F. effusum having an intermediate position. This review shows that Venturia spp. affecting fruit trees are highly host-specific, and that important gaps in understanding the life cycle exist for some species, including V. pyrina; gaps include pseudothecia formation, ascospore and conidia germination, and mycelial growth. Considering the epidemiological information reviewed, this paper shows that the use of Mills tables to predict infection periods should be avoided for Venturia spp. other than V. inaequalis.

Keywords: Fusicladium spp.; Spilocaea spp.; fruit scab; integrated pest management; multiple correspondence analysis.

Figures

Figure 1
Figure 1
Number of papers published on scab (A) and worldwide production (B) for each fruit crop. For (A), the Web of Science was searched on 30 August 2016 for different combinations of words in the title (for apple: “Venturia inaequalis” or “Fusicladium pomi” or “Spilocaea pomi” or “apple scab”; for pear: “Venturia pyrina” or “Venturia pirina” or “Fusicladium pyrorum” or “pear scab” and in light blue “Venturia nashicola” or “Fusicladium nashicola”; for pecan: “Fusicladium effusum” or “Cladosporium effusum” or “Cladosporium caryigenum” or ”pecan scab”; for olive “Spilocaea oleagina” or “Fusicladium oleagineum” or “olive scab” or “olive leaf spot”; for peach: “Venturia carpophila” or “Fusicladium carpophilum” or “Cladosporium carpophilum” or “peach scab”; and for loquat: “Fusicladium eriobotryae” or “Spilocaea eriobotryae” or “loquat scab”). Worldwide production data for (B) were extracted from FAOSTAT, except in the case of loquat, where data from González-Domínguez (2014) were used.
Figure 2
Figure 2
Worldwide distribution of Venturia spp. Gray colors indicate the climate regions proposed by Kottek et al. (2006). Colors and symbols indicate the presence of the different Venturia spp. in each region. Data are from Plantwise and EPPO database.
Figure 3
Figure 3
Relational diagram of the life cycle of Venturia spp. Dotted lines (…) indicate the sexual phase of the life cycle; dashed lines (-----) indicate the asexual phase of the life cycle. The species of Venturia in which the different stages occur are indicated in brackets. Fef, Fusicladium effusum; Fer, Fusicladium eriobotryae; Fol, Fusicladium oleagineum; Vca, Venturia carpophila; Vin, Venturia inaequalis; Vna, Venturia nashicola; Vpy, Venturia pyrina.
Figure 4
Figure 4
Environmental requirements of Venturia spp. for sporulation (A), mycelial growth (B), germinacion (C), and leaves infection (D). A temperature scale from 0 to 40°C is indicated at the top of each panel. Thin lines indicate the temperature at which the different processes occur for each species. Thick lines indicate optimal temperatures. Dotted lines indicate temperatures that are known not to support the process based on experimental evidence. Numbers indicate the hours of wetness necessary at each temperature. For sporulation (A), the RH range in which the process can occur is indicated, with the optimal RH in brackets. For conidial germination (C), the RH range in which the process can occur is indicated; FW indicates that free water is required for germination. Fef, Fusicladium effusum; Fer, Fusicladium eriobotryae; Fol, Fusicladium oleagineum; Vca, Venturia carpophila; Vin, Venturia inaequalis; Vna, Venturia nashicola; Vpy, Venturia pyrina.
Figure 5
Figure 5
Minimum requirements of temperature and hours of wetness for conidial infection by Venturia spp. The requirements have been modeled by using the equation of Magarey et al. (2005). For each species, the maximum, minimum, and optimal temperatures for infection, and the minimum hours of wetness required are those indicated in Table 4.
Figure 6
Figure 6
Distribution of seven Venturia spp. based on the environmental requirements of the pathogens and the biological characteristics of the pathogens and their hosts. (A) Joint plot of the correspondence analysis performed with 15 components related to climate and epidemiological variables of the sexual and asexual phase (CA1 in Table 4); (B) Joint plot of the correspondence analysis performed with 12 components related to epidemiological variables of the sexual and asexual phase (CA2 in Table 4); (C) Joint plot of the correspondence analysis performed with six components related to epidemiological variables of the asexual phase (CA3 in Table 4).

Similar articles

See all similar articles

Cited by 1 article

References

    1. Abe K., Saito T., Terai O., Sato Y., Kotobuki K. (2008). Genotypic difference for the susceptibility of Japanese, Chinese and European pears to Venturia nashicola, the cause of scab on Asian pears. Plant Breed. 127, 407–412. 10.1111/j.1439-0523.2007.01482.x - DOI
    1. Acuña R. P. (2010). Compendio de Bacterias y Hongos de Frutales y Vides en Chile. Santiago de Chile: Servicio Agrícola y Ganadero.
    1. Aylor D. E., Anagnostakis S. L. (1991). Active discharge of ascospores of Venturia inaequalis. Phytopathology 81, 548–551. 10.1094/Phyto-81-548 - DOI
    1. Bearden E., Moller J., Reil W. (1976). Monitoring pear. Calif. Agric. 30, 16–19.
    1. Beck A., Ritschel A., Schubert K., Braun U., Triebel D. (2005). Phylogenetic relationships of the anamorphic genus Fusicladium s.lat. as inferred by ITS nrDNA data. Mycol. Prog. 4, 111–116. 10.1007/s11557-006-0114-8 - DOI
Feedback