Functional connectivity (FC) analysis has revealed stable and reproducible features of brain network organization, as well as their variations across individuals. Here, we localize network markers of individual variability in FC and track their dynamical expression across time. First, we determine the minimal set of network components required to identify individual subjects. Among specific resting-state networks, we find that the FC pattern of the frontoparietal network allows for the most reliable identification of individuals. Looking across the whole brain, an optimization approach designed to identify a minimal node set converges on distributed portions of the frontoparietal system. Second, we track the expression of these network markers across time. We find that the FC fingerprint is most clearly expressed at times when FC patterns exhibit low modularity. In summary, our study reveals distributed network markers of individual variability that are localized in both space and time.