Fighting Type-2 Diabetes: Present and Future Perspectives

Curr Med Chem. 2019;26(10):1891-1907. doi: 10.2174/0929867324666171009115356.


Background: Type-2 diabetes mellitus accounts for 80-90% of diabetic patients. So far, the treatment of diabetes mainly aims at elevating insulin level and lowering glucose level in the peripheral blood and mitigating insulin resistance. Physiologically, insulin secretion from pancreatic β cells is delicately regulated. Thus, how insulin-related therapies could titrate blood glucose appropriately and avoid the occurrence of hypoglycemia remains an important issue for decades. Similar question is addressed on how to attenuate vascular complication in diabetic subjects.

Methods: We overviewed the evolution of each class of anti-diabetic drugs that have been used in clinical practice, focusing on their mechanisms, clinical results and cautions.

Results: Glucagon-like peptide-1 receptor agonists stimulate β cells for insulin secretion in response to diet but not in fasting stage, which make them superior than conventional insulinsecretion stimulators. DPP-4 inhibitors suppress glucagon-like peptide-1 degradation. Sodium/ glucose co-transporter 2 inhibitors enhance glucose clearance through urine excretion. The appearance of these new drugs provides new information about glycemic control. We update the clinical findings of Glucagon-like peptide-1 receptor agonists, DPP-4 inhibitors and Sodium/glucose cotransporter 2 inhibitors in glycemic control and the risk or progression of cardiovascular disease in diabetic patients. Stem cell therapy might be an alternative tool for diabetic patients to improve β cell regeneration and peripheral ischemia. We summarize the clinical results of mesenchymal stem cells transplanted into patients with diabetic limb and foot.

Conclusion: A stepwise intensification of dual and triple therapy for individual diabetic patient is required to achieve therapeutic target.

Keywords: Type-2 diabetes mellitus; glucose homeostasis; insulin; insulin resistance; pancreatic β cells; stem cells..

Publication types

  • Review

MeSH terms

  • Animals
  • Diabetes Mellitus, Type 2 / drug therapy*
  • Diabetes Mellitus, Type 2 / physiopathology
  • Diabetes Mellitus, Type 2 / therapy*
  • Humans
  • Hypoglycemic Agents / therapeutic use*
  • Induced Pluripotent Stem Cells / transplantation
  • Insulin Resistance / physiology
  • Insulin-Secreting Cells / drug effects
  • Mesenchymal Stem Cell Transplantation


  • Hypoglycemic Agents