Tunable and Linker Free Nanogaps in Core-Shell Plasmonic Nanorods for Selective and Quantitative Detection of Circulating Tumor Cells by SERS

ACS Appl Mater Interfaces. 2017 Nov 1;9(43):37597-37605. doi: 10.1021/acsami.7b10959. Epub 2017 Oct 18.

Abstract

Controlling the size, number, and shape of nanogaps in plasmonic nanostructures is of significant importance for the development of novel quantum plasmonic devices and quantitative sensing techniques such as surface-enhanced Raman scattering (SERS). Here, we introduce a new synthetic method based on coordination interactions and galvanic replacement to prepare core-shell plasmonic nanorods with tunable enclosed nanogaps. Decorating Au nanorods with Raman reporters that strongly coordinate Ag+ ions (e.g., 4-mercaptopyridine) afforded uniform nucleation sites to form a sacrificial Ag shell. Galvanic replacement of the Ag shell by HAuCl4 resulted in Au-AgAu core-shell structure with a uniform intra-nanoparticle gap. The size (length and width) and morphology of the core-shell plasmonic nanorods as well as the nanogap size depend on the concentration of the coordination complexes formed between Ag+ ions and 4-mercaptopyridine. Moreover, encapsulating Raman reporters within the nanogaps afforded an internal standard for sensitive and quantitative SERS analysis. To test the applicability, core-shell plasmonic nanorods were functionalized with aptamers specific to circulating tumor cells such as MCF-7 (Michigan Cancer Foundation-7, breast cancer cell line). This system could selectively detect as low as 20 MCF-7 cells in a blood mimicking fluid employing SERS. The linking DNA duplex on core-shell plasmonic nanorods can also intercalate hydrophobic drug molecules such as Doxorubicin, thereby increasing the versatility of this sensing platform to include drug delivery. Our synthetic method offers the possibility of developing multifunctional SERS-active materials with a wide range of applications including biosensing, imaging, and therapy.

Keywords: SERS; circulating tumor cells; coordination complexes; core−shell; galvanic replacement.

MeSH terms

  • Gold
  • Humans
  • Metal Nanoparticles
  • Nanostructures
  • Nanotubes
  • Neoplastic Cells, Circulating*
  • Silver

Substances

  • Silver
  • Gold