Characterization of the Rotating Exercise Quantification System (REQS), a novel Drosophila exercise quantification apparatus

PLoS One. 2017 Oct 10;12(10):e0185090. doi: 10.1371/journal.pone.0185090. eCollection 2017.

Abstract

Obesity is a disease that has reached epidemic proportions in the United States and has prompted international legislation in an attempt to curtail its prevalence. Despite the fact that one of the most prescribed treatment options for obesity is exercise, the genetic mechanisms underlying exercise response in individuals are still largely unknown. The fruit fly Drosophila melanogaster is a promising new model for studying exercise genetics. Currently, the lack of an accurate method to quantify the amount of exercise performed by the animals is limiting the utility of the Drosophila model for exercise genetics research. To address this limitation, we developed the Rotational Exercise Quantification System (REQS), a novel apparatus that is able to simultaneously induce exercise in flies while recording their activity levels. Thus, the REQS provides a method to standardize Drosophila exercise and ensure that all animals irrespective of genotype and sex experience the same level of exercise. Here, we provide a basic characterization of the REQS, validate its measurements using video-tracking technology, illustrate its potential use by presenting a comparison of two different exercise regimes, and demonstrate that it can be used to detect genotype-dependent variation in activity levels.

MeSH terms

  • Animals
  • Disease Models, Animal
  • Drosophila melanogaster / genetics
  • Drosophila melanogaster / physiology*
  • Exercise*
  • Genotype
  • Humans
  • Obesity / genetics
  • Obesity / physiopathology
  • Obesity / therapy*
  • Physical Conditioning, Animal / methods*