The sea cucumber genome provides insights into morphological evolution and visceral regeneration
- PMID: 29023486
- PMCID: PMC5638244
- DOI: 10.1371/journal.pbio.2003790
The sea cucumber genome provides insights into morphological evolution and visceral regeneration
Abstract
Apart from sharing common ancestry with chordates, sea cucumbers exhibit a unique morphology and exceptional regenerative capacity. Here we present the complete genome sequence of an economically important sea cucumber, A. japonicus, generated using Illumina and PacBio platforms, to achieve an assembly of approximately 805 Mb (contig N50 of 190 Kb and scaffold N50 of 486 Kb), with 30,350 protein-coding genes and high continuity. We used this resource to explore key genetic mechanisms behind the unique biological characters of sea cucumbers. Phylogenetic and comparative genomic analyses revealed the presence of marker genes associated with notochord and gill slits, suggesting that these chordate features were present in ancestral echinoderms. The unique shape and weak mineralization of the sea cucumber adult body were also preliminarily explained by the contraction of biomineralization genes. Genome, transcriptome, and proteome analyses of organ regrowth after induced evisceration provided insight into the molecular underpinnings of visceral regeneration, including a specific tandem-duplicated prostatic secretory protein of 94 amino acids (PSP94)-like gene family and a significantly expanded fibrinogen-related protein (FREP) gene family. This high-quality genome resource will provide a useful framework for future research into biological processes and evolution in deuterostomes, including remarkable regenerative abilities that could have medical applications. Moreover, the multiomics data will be of prime value for commercial sea cucumber breeding programs.
Conflict of interest statement
The authors have declared that no competing interests exist.
Figures
Similar articles
-
Chromosome-level genome assembly of the sea cucumber Apostichopus japonicus.Sci Data. 2023 Jul 13;10(1):454. doi: 10.1038/s41597-023-02368-9. Sci Data. 2023. PMID: 37443361 Free PMC article.
-
Patterning of anteroposterior body axis displayed in the expression of Hox genes in sea cucumber Apostichopus japonicus.Dev Genes Evol. 2015 Sep;225(5):275-86. doi: 10.1007/s00427-015-0510-7. Epub 2015 Aug 7. Dev Genes Evol. 2015. PMID: 26250612
-
Mitochondrial gene rearrangement in the sea cucumber genus Cucumaria.Mol Biol Evol. 1998 Aug;15(8):1009-16. doi: 10.1093/oxfordjournals.molbev.a025999. Mol Biol Evol. 1998. PMID: 9718728
-
MicroRNAs involved in innate immunity regulation in the sea cucumber: A review.Fish Shellfish Immunol. 2019 Dec;95:297-304. doi: 10.1016/j.fsi.2019.10.049. Epub 2019 Oct 25. Fish Shellfish Immunol. 2019. PMID: 31669896 Review.
-
A review of the immune molecules in the sea cucumber.Fish Shellfish Immunol. 2015 May;44(1):1-11. doi: 10.1016/j.fsi.2015.01.026. Epub 2015 Feb 3. Fish Shellfish Immunol. 2015. PMID: 25655326 Review.
Cited by
-
Sea Cucumber Viscera Contains Novel Non-Holostane-Type Glycoside Toxins that Possess a Putative Chemical Defense Function.J Chem Ecol. 2024 Mar 5. doi: 10.1007/s10886-024-01483-0. Online ahead of print. J Chem Ecol. 2024. PMID: 38441803
-
Sea cucumbers: an emerging system in evo-devo.Evodevo. 2024 Feb 17;15(1):3. doi: 10.1186/s13227-023-00220-0. Evodevo. 2024. PMID: 38368336 Free PMC article. Review.
-
Hagfish genome elucidates vertebrate whole-genome duplication events and their evolutionary consequences.Nat Ecol Evol. 2024 Mar;8(3):519-535. doi: 10.1038/s41559-023-02299-z. Epub 2024 Jan 12. Nat Ecol Evol. 2024. PMID: 38216617 Free PMC article.
-
A signal recognition particle receptor gene from the sea cucumber, Apostichopus japonicas.Sci Rep. 2023 Dec 27;13(1):22973. doi: 10.1038/s41598-023-50320-z. Sci Rep. 2023. PMID: 38151522 Free PMC article.
-
Transcriptomic Responses of a Lightly Calcified Echinoderm to Experimental Seawater Acidification and Warming during Early Development.Biology (Basel). 2023 Dec 13;12(12):1520. doi: 10.3390/biology12121520. Biology (Basel). 2023. PMID: 38132346 Free PMC article.
References
-
- Sodergren E, Weinstock GM, Davidson EH, Cameron RA, Gibbs RA, Angerer RC, et al. The genome of the sea urchin Strongylocentrotus purpuratus. Science. 2006;314: 941–952. doi: 10.1126/science.1133609 - DOI - PMC - PubMed
-
- Hall MR, Kocot KM, Baughman KW, Fernandez-Valverde SL, Gauthier MEA, Hatleberg WL, et al. The crown-of-thorns starfish genome as a guide for biocontrol of this coral reef pest. Nature. 2017;544(7649): 231–234. doi: 10.1038/nature22033 - DOI - PubMed
-
- Rychel AL, Swalla BJ. Regeneration in hemichordates and echinoderms. Stem Cells in Mar Organ. 2009: 245–265.
-
- Carnevali MC. Regeneration in Echinoderms: repair, regrowth, cloning. ISJ-Invertebr Surviv J. 2006;3: 64–76.
-
- Mashanov VS, García-Arrarás JE. Gut regeneration in holothurians: a snapshot of recent developments. Biol Bull. 2011;221: 93–109. doi: 10.1086/BBLv221n1p93 - DOI - PubMed
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Miscellaneous
