1-Benzyl-indole-3-carbinol is a highly potent new small molecule inhibitor of Wnt/β-catenin signaling in melanoma cells that coordinately inhibits cell proliferation and disrupts expression of microphthalmia-associated transcription factor isoform-M

Carcinogenesis. 2017 Dec 7;38(12):1207-1217. doi: 10.1093/carcin/bgx103.

Abstract

1-Benzyl-indole-3-carbinol (1-benzyl-I3C), a synthetic analogue of the crucifer-derived natural phytochemical I3C, displayed significantly wider sensitivity and anti-proliferative potency in melanoma cells than the natural compound. Unlike I3C, which targets mainly oncogenic BRAF-expressing cells, 1-benzyl-I3C effectively inhibited proliferation of melanoma cells with a more extensive range of mutational profiles, including those expressing wild-type BRAF. In both cultured melanoma cell lines and in vivo in melanoma cell-derived tumor xenografts, 1-benzyl-I3C disrupted canonical Wnt/β-catenin signaling that resulted in the downregulation of β-catenin protein levels with a concomitant increase in levels of the β-catenin destruction complex components such as glycogen synthase kinase-3β (GSK-3β) and Axin. Concurrent with the inhibition of Wnt/β-catenin signaling, 1-benzyl-I3C strongly downregulated expression of the melanoma master regulator, microphthalmia-associated transcription factor isoform-M (MITF-M) by inhibiting promoter activity through the consensus lymphoid enhancer factor-1 (LEF-1)/T-cell transcription factor (TCF) DNA-binding site. Chromatin immunoprecipitation revealed that 1-benzyl-I3C downregulated interactions of endogenous LEF-1 with the MITF-M promoter. 1-Benzyl-I3C ablated Wnt-activated LEF-1-dependent reporter gene activity in a TOP FLASH assay that was rescued by expression of a constitutively active form of the Wnt co-receptor low-density lipoprotein receptor-related protein (LRP6), indicating that 1-benzyl-I3C disrupts Wnt/β-catenin signaling at or upstream of LRP6. In oncogenic BRAF-expressing melanoma cells, combinations of 1-benzyl-I3C and Vemurafenib, a clinically employed BRAF inhibitor, showed strong anti-proliferative effects. Taken together, our observations demonstrate that 1-benzyl-I3C represents a new and highly potent indolecarbinol-based small molecule inhibitor of Wnt/β-catenin signaling that has intriguing translational potential, alone or in combination with other anti-cancer agents, to treat human melanoma.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Antineoplastic Agents / pharmacology*
  • Cell Line, Tumor
  • Cell Proliferation / drug effects
  • Humans
  • Indoles / pharmacology*
  • Melanoma / pathology*
  • Mice
  • Microphthalmia-Associated Transcription Factor / biosynthesis*
  • Skin Neoplasms / pathology*
  • Wnt Signaling Pathway / drug effects*
  • Xenograft Model Antitumor Assays

Substances

  • Antineoplastic Agents
  • Indoles
  • MITF protein, human
  • Microphthalmia-Associated Transcription Factor
  • indole-3-carbinol