Disruption of Core Planar Cell Polarity Signaling Regulates Renal Tubule Morphogenesis but Is Not Cystogenic

Curr Biol. 2017 Oct 23;27(20):3120-3131.e4. doi: 10.1016/j.cub.2017.09.011. Epub 2017 Oct 12.


Oriented cell division (OCD) and convergent extension (CE) shape developing renal tubules, and their disruption has been associated with polycystic kidney disease (PKD) genes, the majority of which encode proteins that localize to primary cilia. Core planar cell polarity (PCP) signaling controls OCD and CE in other contexts, leading to the hypothesis that disruption of PCP signaling interferes with CE and/or OCD to produce PKD. Nonetheless, the contribution of PCP to tubulogenesis and cystogenesis is uncertain, and two major questions remain unanswered. Specifically, the inference that mutation of PKD genes interferes with PCP signaling is untested, and the importance of PCP signaling for cystogenic PKD phenotypes has not been examined. We show that, during proliferative stages, PCP signaling polarizes renal tubules to control OCD. However, we find that, contrary to the prevailing model, PKD mutations do not disrupt PCP signaling but instead act independently and in parallel with PCP signaling to affect OCD. Indeed, PCP signaling that is normally downregulated once development is completed is retained in cystic adult kidneys. Disrupting PCP signaling results in inaccurate control of tubule diameter, a tightly regulated parameter with important physiological ramifications. However, we show that disruption of PCP signaling is not cystogenic. Our results suggest that regulating tubule diameter is a key function of PCP signaling but that loss of this control does not induce cysts.

Keywords: oriented cell division; planar cell polarity; polycystic kidney disease; renal tubule diameter.

MeSH terms

  • Animals
  • Cell Polarity / physiology*
  • Female
  • Kidney Tubules / physiology*
  • Kidney Tubules / physiopathology
  • Male
  • Mice
  • Morphogenesis*
  • Polycystic Kidney Diseases / physiopathology*
  • Signal Transduction*