Molecular Switches for any pH: A Systematic Study of the Versatile Coordination Behaviour of Cyclam Scorpionands

Chemistry. 2018 Feb 1;24(7):1573-1585. doi: 10.1002/chem.201703488. Epub 2017 Dec 27.

Abstract

Molecular switches have many potential applications in nanoscience and biomedicine. Transition metal complexes that can be switched from an inert, unreactive state to a catalytically active one by a simple change in conditions (e.g. pH shift) or by binding to a specific biomolecular target-so-called target-activated metal complexes (TAMCs)-hold particular allure as a means of harnessing the potent but at times indiscriminate reactivity of metal-based drugs. Towards this goal, we have prepared a series of ten structurally related ligands, each of which bears a different pendant side-arm functional group appended to a common macrocyclic core, along with copper(II) and nickel(II) complexes of these cyclam-based "molecular scorpionands". X-ray crystal structures reveal a variety of binding modes between pendant side-arm and metal centre that depend on the constituent donor atoms. To investigate the switchability of side-arm coordination in solution, spectrophotometric pH titrations were carried out for all 20 metal complexes. The majority of the complexes undergo spectroscopic changes that are consistent with a switch in pendant coordination state at a specific pH. This ligand series represents a comprehensive model platform from which to build pH-switchable metal complexes for applications in nanoscience and biomedicine.

Keywords: azamacrocycle; metal complex; molecular switch; pH switching; scorpiand; scorpionand.