Comprehensive functional characterization of the glycoside hydrolase family 3 enzymes from Cellvibrio japonicus reveals unique metabolic roles in biomass saccharification
- PMID: 29052930
- PMCID: PMC5858740
- DOI: 10.1111/1462-2920.13959
Comprehensive functional characterization of the glycoside hydrolase family 3 enzymes from Cellvibrio japonicus reveals unique metabolic roles in biomass saccharification
Abstract
Lignocellulose degradation is central to the carbon cycle and renewable biotechnologies. The xyloglucan (XyG), β(1→3)/β(1→4) mixed-linkage glucan (MLG) and β(1→3) glucan components of lignocellulose represent significant carbohydrate energy sources for saprophytic microorganisms. The bacterium Cellvibrio japonicus has a robust capacity for plant polysaccharide degradation, due to a genome encoding a large contingent of Carbohydrate-Active enZymes (CAZymes), many of whose specific functions remain unknown. Using a comprehensive genetic and biochemical approach, we have delineated the physiological roles of the four C. japonicus glycoside hydrolase family 3 (GH3) members on diverse β-glucans. Despite high protein sequence similarity and partially overlapping activity profiles on disaccharides, these β-glucosidases are not functionally equivalent. Bgl3A has a major role in MLG and sophorose utilization, and supports β(1→3) glucan utilization, while Bgl3B underpins cellulose utilization and supports MLG utilization. Bgl3C drives β(1→3) glucan utilization. Finally, Bgl3D is the crucial β-glucosidase for XyG utilization. This study not only sheds the light on the metabolic machinery of C. japonicus, but also expands the repertoire of characterized CAZymes for future deployment in biotechnological applications. In particular, the precise functional analysis provided here serves as a reference for informed bioinformatics on the genomes of other Cellvibrio and related species.
© 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.
Conflict of interest statement
In addition, the authors declare that they have no conflict of interest.
Figures
Similar articles
-
In vitro and in vivo characterization of three Cellvibrio japonicus glycoside hydrolase family 5 members reveals potent xyloglucan backbone-cleaving functions.Biotechnol Biofuels. 2018 Feb 17;11:45. doi: 10.1186/s13068-018-1039-6. eCollection 2018. Biotechnol Biofuels. 2018. PMID: 29467823 Free PMC article.
-
Functional and structural characterization of a potent GH74 endo-xyloglucanase from the soil saprophyte Cellvibrio japonicus unravels the first step of xyloglucan degradation.FEBS J. 2016 May;283(9):1701-19. doi: 10.1111/febs.13696. Epub 2016 Mar 30. FEBS J. 2016. PMID: 26929175
-
Systems analysis of the glycoside hydrolase family 18 enzymes from Cellvibrio japonicus characterizes essential chitin degradation functions.J Biol Chem. 2018 Mar 9;293(10):3849-3859. doi: 10.1074/jbc.RA117.000849. Epub 2018 Jan 24. J Biol Chem. 2018. PMID: 29367339 Free PMC article.
-
Polysaccharide degradation systems of the saprophytic bacterium Cellvibrio japonicus.World J Microbiol Biotechnol. 2016 Jul;32(7):121. doi: 10.1007/s11274-016-2068-6. Epub 2016 Jun 4. World J Microbiol Biotechnol. 2016. PMID: 27263016 Review.
-
Genetic and functional genomic approaches for the study of plant cell wall degradation in Cellvibrio japonicus.Methods Enzymol. 2012;510:331-47. doi: 10.1016/B978-0-12-415931-0.00018-5. Methods Enzymol. 2012. PMID: 22608735 Review.
Cited by
-
A Multiplexing Activity-Based Protein-Profiling Platform for Dissection of a Native Bacterial Xyloglucan-Degrading System.ACS Cent Sci. 2023 Nov 24;9(12):2306-2314. doi: 10.1021/acscentsci.3c00831. eCollection 2023 Dec 27. ACS Cent Sci. 2023. PMID: 38161374 Free PMC article.
-
Complete Genome Sequences of Cellvibrio japonicus Strains with Improved Growth When Using α-Diglucosides.Microbiol Resour Announc. 2019 Oct 31;8(44):e01077-19. doi: 10.1128/MRA.01077-19. Microbiol Resour Announc. 2019. PMID: 31672746 Free PMC article.
-
Unifying themes and distinct features of carbon and nitrogen assimilation by polysaccharide-degrading bacteria: a summary of four model systems.Appl Microbiol Biotechnol. 2021 Nov;105(21-22):8109-8127. doi: 10.1007/s00253-021-11614-2. Epub 2021 Oct 6. Appl Microbiol Biotechnol. 2021. PMID: 34611726 Review.
-
Substrate specificity, regiospecificity, and processivity in glycoside hydrolase family 74.J Biol Chem. 2019 Sep 6;294(36):13233-13247. doi: 10.1074/jbc.RA119.009861. Epub 2019 Jul 19. J Biol Chem. 2019. PMID: 31324716 Free PMC article.
-
In vitro and in vivo characterization of three Cellvibrio japonicus glycoside hydrolase family 5 members reveals potent xyloglucan backbone-cleaving functions.Biotechnol Biofuels. 2018 Feb 17;11:45. doi: 10.1186/s13068-018-1039-6. eCollection 2018. Biotechnol Biofuels. 2018. PMID: 29467823 Free PMC article.
References
-
- Arellano-Reynoso B, Lapaque N, Salcedo S, Briones G, Ciocchini AE, Ugalde R, et al. Cyclic beta-1,2-glucan is a brucella virulence factor required for intracellular survival. Nature Immunology. 2005;6:618–625. - PubMed
-
- Attia M, Stepper J, Davies GJ, Brumer H. Functional and structural characterization of a potent GH74 endo-xyloglucanase from the soil saprophyte Cellvibrio japonicus unravels the first step of xyloglucan degradation. FEBS J. 2016;283:1701–1719. - PubMed
-
- Attia MA, Brumer H. Recent structural insights into the enzymology of the ubiquitous plant cell wall glycan xyloglucan. Curr Opin Struct Biol. 2016;40:43–53. - PubMed
-
- Bhatia Y, Mishra S, Bisaria VS. Purification and characterization of recombinant Escherichia coli-expressed Pichia etchellsii beta-glucosidase II with high hydrolytic activity on sophorose. Applied Microbiology and Biotechnology. 2005;66:527–535. - PubMed
-
- Blattner FR, Plunkett G, Bloch CA, 3rd, Perna NT, Burland V, Riley M, et al. The complete genome sequence of Escherichia coli K-12. Science. 1997;277:1453–1462. - PubMed
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
