Cancer is traditionally considered a genetic disease. It starts with a gene mutation, often caused by environmental carcinogens that are enzymatically activated to metabolites that covalently bind to DNA. If these now-damaged carcinogen-DNA adducts are not repaired before the cell replicates, they result in a mutation, which is inherited by daughter cells and their subsequent progeny. Still more mutations are added that are thought to advance cellular independence, metastasis, and drug resistance, among other characteristics typically observed for advanced cancer. The stages of initiation, promotion and progression of cancer by mutations infer irreversibility because back mutations are exceedingly rare. Thus, treatment protocols typically are designed to remove or kill cancer cells by surgery, chemotherapy, immunotherapy and/or radiotherapy. However, empirical evidence has existed to show a fundamentally different treatment option. For example, the promotion of cancer growth and development in laboratory animals initiated by a powerful mutagen/carcinogen can be repetitively turned on and off by non-mutagenic mechanisms, even completely, by modifying the consumption of protein at relevant levels of intake. Similar but less substantiated evidence also exists for other nutrients and other cancer types. This suggests that ultimate cancer development is primarily a nutrition-responsive disease rather than a genetic disease, with the understanding that nutrition is a comprehensive, wholistic biological effect that reflects the natural contents of nutrients and related substances in whole, intact food. This perspective sharply contrasts with the contemporary inference that nutrition is the summation of individual nutrients acting independently. The spelling of 'holism' with the 'w' is meant to emphasize the empirical basis for this function. The proposition that wholistic nutrition controls and even reverses disease development suggests that cancer may be treated by nutritional intervention.
Keywords: cancer etiology; cancer mutations; cancer prevention; cancer treatment.