HMGB1-mediated autophagy attenuates gemcitabine-induced apoptosis in bladder cancer cells involving JNK and ERK activation

Oncotarget. 2017 May 11;8(42):71642-71656. doi: 10.18632/oncotarget.17796. eCollection 2017 Sep 22.

Abstract

High-mobility group box 1 (HMGB1) has been found to mediate autophagy during chemotherapy in several cancers. However, whether HMGB1plays a role in autophagy and chemoresistance in bladder cancer is elusive. In this report, HMGB1 expression was found to be increased in 30 primary bladder cancer tissue specimens compared to their matched adjacent non-tumor tissues. While gemcitabine induced apoptotic cell death, it also induced HMGB1 expression and autophagy in bladder cancer T24 and BIU-87 cells. Suppressing HMGB1 expression with siRNA strongly potentiated gemcitabine-induced apoptosis. HMGB1 siRNA or autophagy inhibitors suppressed gemcitabine-induced autophagy. Further, gemcitabine activated c-Jun N-terminal kinase (JNK) and extracellular regulated protein kinase (ERK) and Bcl-2 phosphorylation, and blocking ERK and JNK inhibited autophagy and increased apoptosis in gemcitabine-treated cells. Interestingly, suppressing HMGB1 expression attenuated gemcitabine-induced ERK and JNK activation and Bcl-2 phosphorylation. Thus, our results suggest that while gemcitabine kills bladder cancer cells through apoptosis, a cytoprotective autophagy is also induced involving HMGB1-mediated JNK and ERK to counteract the cytotoxicity of gemcitabine, and intervention targeting this pathway may improve the anticancer efficacy of gemcitabine against bladder cancer.

Keywords: autophagy; bladder carcinoma; chemoresistance; high-mobility group box 1; mitogen-activated protein kinase.