Computational Radiomics System to Decode the Radiographic Phenotype
- PMID: 29092951
- PMCID: PMC5672828
- DOI: 10.1158/0008-5472.CAN-17-0339
Computational Radiomics System to Decode the Radiographic Phenotype
Abstract
Radiomics aims to quantify phenotypic characteristics on medical imaging through the use of automated algorithms. Radiomic artificial intelligence (AI) technology, either based on engineered hard-coded algorithms or deep learning methods, can be used to develop noninvasive imaging-based biomarkers. However, lack of standardized algorithm definitions and image processing severely hampers reproducibility and comparability of results. To address this issue, we developed PyRadiomics, a flexible open-source platform capable of extracting a large panel of engineered features from medical images. PyRadiomics is implemented in Python and can be used standalone or using 3D Slicer. Here, we discuss the workflow and architecture of PyRadiomics and demonstrate its application in characterizing lung lesions. Source code, documentation, and examples are publicly available at www.radiomics.io With this platform, we aim to establish a reference standard for radiomic analyses, provide a tested and maintained resource, and to grow the community of radiomic developers addressing critical needs in cancer research. Cancer Res; 77(21); e104-7. ©2017 AACR.
©2017 American Association for Cancer Research.
Conflict of interest statement
Figures
Comment in
-
Images Are Data: Challenges and Opportunities in the Clinical Translation of Radiomics.Cancer Res. 2022 Jun 6;82(11):2066-2068. doi: 10.1158/0008-5472.CAN-22-1183. Cancer Res. 2022. PMID: 35661199
Similar articles
-
Technical Note: Ontology-guided radiomics analysis workflow (O-RAW).Med Phys. 2019 Dec;46(12):5677-5684. doi: 10.1002/mp.13844. Epub 2019 Oct 25. Med Phys. 2019. PMID: 31580484 Free PMC article.
-
Robust Radiomics feature quantification using semiautomatic volumetric segmentation.PLoS One. 2014 Jul 15;9(7):e102107. doi: 10.1371/journal.pone.0102107. eCollection 2014. PLoS One. 2014. PMID: 25025374 Free PMC article.
-
Images Are Data: Challenges and Opportunities in the Clinical Translation of Radiomics.Cancer Res. 2022 Jun 6;82(11):2066-2068. doi: 10.1158/0008-5472.CAN-22-1183. Cancer Res. 2022. PMID: 35661199
-
The Applications of Radiomics in Precision Diagnosis and Treatment of Oncology: Opportunities and Challenges.Theranostics. 2019 Feb 12;9(5):1303-1322. doi: 10.7150/thno.30309. eCollection 2019. Theranostics. 2019. PMID: 30867832 Free PMC article. Review.
-
Radiomics: a primer on high-throughput image phenotyping.Abdom Radiol (NY). 2022 Sep;47(9):2986-3002. doi: 10.1007/s00261-021-03254-x. Epub 2021 Aug 25. Abdom Radiol (NY). 2022. PMID: 34435228 Review.
Cited by
-
Non-invasive assessment of programmed cell death ligand-1 expression using 18F-FDG PET-CT imaging in esophageal squamous cell carcinoma.Sci Rep. 2024 Oct 30;14(1):26082. doi: 10.1038/s41598-024-77680-4. Sci Rep. 2024. PMID: 39478052 Free PMC article.
-
Radiomics for Distinguishing Myocardial Infarction from Myocarditis at Late Gadolinium Enhancement at MRI: Comparison with Subjective Visual Analysis.Radiol Cardiothorac Imaging. 2019 Dec 19;1(5):e180026. doi: 10.1148/ryct.2019180026. eCollection 2019 Dec. Radiol Cardiothorac Imaging. 2019. PMID: 33778525 Free PMC article.
-
Decoding and Systematization of Medical Imaging Features of Multiple Human Malignancies.Radiol Imaging Cancer. 2020 Sep 11;2(5):e190079. doi: 10.1148/rycan.2020190079. eCollection 2020 Sep. Radiol Imaging Cancer. 2020. PMID: 33778732 Free PMC article.
-
An automated approach for predicting glioma grade and survival of LGG patients using CNN and radiomics.Front Oncol. 2022 Aug 12;12:969907. doi: 10.3389/fonc.2022.969907. eCollection 2022. Front Oncol. 2022. PMID: 36033433 Free PMC article.
-
A Critical Analysis of the Robustness of Radiomics to Variations in Segmentation Methods in 18F-PSMA-1007 PET Images of Patients Affected by Prostate Cancer.Diagnostics (Basel). 2023 Dec 11;13(24):3640. doi: 10.3390/diagnostics13243640. Diagnostics (Basel). 2023. PMID: 38132224 Free PMC article.
References
-
- Aerts HJWL. The Potential of Radiomic-Based Phenotyping in Precision Medicine: A Review. JAMA Oncol. 2016;2:1636–42. - PubMed
-
- Marusyk A, Almendro V, Polyak K. Intra-tumour heterogeneity: a looking glass for cancer? Nat Rev Cancer. 2012;12:323–34. - PubMed
-
- LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521:436–44. - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
