Biological Molecules-Governed Plasmonic Nanoparticle Dimers with Tailored Optical Behaviors

J Phys Chem Lett. 2017 Nov 16;8(22):5633-5642. doi: 10.1021/acs.jpclett.7b01781. Epub 2017 Nov 7.

Abstract

Self-assembly opens new avenues to direct the organization of nanoparticles (NPs) into discrete structures with predefined configuration and association numbers. Plasmonic NP dimers provide a well-defined system for investigating the plasmonic coupling and electromagnetic (EM) interaction in arrays of NPs. The programmability and structural plasticity of biomolecules offers a convenient platform for constructing of NP dimers in a controllable way. Plasmonic coupling of NPs enables dimers to exhibit tunable optical properties, such as surface-enhanced Raman scattering (SERS), chirality, photoluminescence, and electrochemiluminescence (ECL) properties, which can be tailored by altering the biomolecules, the building blocks with distinct compositions, sizes and morphology, the interparticle distances, as well as the geometric configuration of the constituent NPs. An overview of recent developments in biological molecules-governed NP dimers, the tailored optical behaviors, and challenges in enhancing optical signals and proposing plasmonic biosensors are discussed in this Perspective.