Numerical Hydrodynamics in General Relativity
- PMID: 29104452
- PMCID: PMC5660627
- DOI: 10.12942/lrr-2003-4
Numerical Hydrodynamics in General Relativity
Abstract
The current status of numerical solutions for the equations of ideal general relativistic hydrodynamics is reviewed. With respect to an earlier version of the article, the present update provides additional information on numerical schemes, and extends the discussion of astrophysical simulations in general relativistic hydrodynamics. Different formulations of the equations are presented, with special mention of conservative and hyperbolic formulations well-adapted to advanced numerical methods. A large sample of available numerical schemes is discussed, paying particular attention to solution procedures based on schemes exploiting the characteristic structure of the equations through linearized Riemann solvers. A comprehensive summary of astrophysical simulations in strong gravitational fields is presented. These include gravitational collapse, accretion onto black holes, and hydrodynamical evolutions of neutron stars. The material contained in these sections highlights the numerical challenges of various representative simulations. It also follows, to some extent, the chronological development of the field, concerning advances on the formulation of the gravitational field and hydrodynamic equations and the numerical methodology designed to solve them.
Electronic supplementary material: Supplementary material is available for this article at 10.12942/lrr-2003-4.
Figures
Similar articles
-
Numerical Hydrodynamics in Special Relativity.Living Rev Relativ. 2003;6(1):7. doi: 10.12942/lrr-2003-7. Epub 2003 Dec 19. Living Rev Relativ. 2003. PMID: 28179862 Free PMC article. Review.
-
Numerical Hydrodynamics and Magnetohydrodynamics in General Relativity.Living Rev Relativ. 2008;11(1):7. doi: 10.12942/lrr-2008-7. Epub 2008 Sep 19. Living Rev Relativ. 2008. PMID: 28179823 Free PMC article. Review.
-
Numerical Hydrodynamics in General Relativity.Living Rev Relativ. 2000;3(1):2. doi: 10.12942/lrr-2000-2. Epub 2000 May 8. Living Rev Relativ. 2000. PMID: 28179854 Free PMC article. Review.
-
Numerical Hydrodynamics in Special Relativity.Living Rev Relativ. 1999;2(1):3. doi: 10.12942/lrr-1999-3. Epub 1999 Dec 15. Living Rev Relativ. 1999. PMID: 28937185 Free PMC article. Review.
-
Gravitational Waves from Gravitational Collapse.Living Rev Relativ. 2011;14(1):1. doi: 10.12942/lrr-2011-1. Epub 2011 Jan 20. Living Rev Relativ. 2011. PMID: 28163617 Free PMC article. Review.
Cited by
-
Higher-order accurate space-time schemes for computational astrophysics-Part I: finite volume methods.Living Rev Comput Astrophys. 2017;3(1):2. doi: 10.1007/s41115-017-0002-8. Epub 2017 Dec 11. Living Rev Comput Astrophys. 2017. PMID: 30652123 Free PMC article. Review.
-
Characteristic Evolution and Matching.Living Rev Relativ. 2005;8(1):10. doi: 10.12942/lrr-2005-10. Epub 2005 Dec 8. Living Rev Relativ. 2005. PMID: 28179870 Free PMC article. Review.
-
Numerical Hydrodynamics in Special Relativity.Living Rev Relativ. 2003;6(1):7. doi: 10.12942/lrr-2003-7. Epub 2003 Dec 19. Living Rev Relativ. 2003. PMID: 28179862 Free PMC article. Review.
-
Computational Cosmology: From the Early Universe to the Large Scale Structure.Living Rev Relativ. 2001;4(1):2. doi: 10.12942/lrr-2001-2. Epub 2001 Mar 20. Living Rev Relativ. 2001. PMID: 28179857 Free PMC article. Review.
-
Numerical Hydrodynamics and Magnetohydrodynamics in General Relativity.Living Rev Relativ. 2008;11(1):7. doi: 10.12942/lrr-2008-7. Epub 2008 Sep 19. Living Rev Relativ. 2008. PMID: 28179823 Free PMC article. Review.
References
-
- Abramowicz M, Jaroszynski M, Sikora M. Relativistic, accreting disks. Astron. Astrophys. 1978;63:221–224.
-
- Abramowicz MA, Calvani M, Nobili L. Runaway instability in accretion disks orbiting black holes. Nature. 1983;302:597–599. doi: 10.1038/302597a0. - DOI
-
- Abramowicz MA, Czerny B, Lasota JP, Szuszkiewicz E. Slim accretion disks. Astrophys. J. 1988;332:646–658. doi: 10.1086/166683. - DOI
-
- Alcubierre M, Allen G, Brügmann B, Dramlitsch T, Font JA, Papadopoulos P, Seidel E, Stergioulas N, Suen W-M, Takahashi R. Towards a stable numerical evolution of strongly gravitating systems in general relativity: The conformal treatments. Phys. Rev. D. 2000;62:044034–1-044034-16. doi: 10.1103/PhysRevD.62.044034. - DOI
-
- Alcubierre M, Allen G, Brügmann B, Seidel E, Suen W-M. Towards an understanding of the stability properties of the 3+1 evolution equations in general relativity. Phys. Rev. D. 2000;62:124011–1-124011-15. doi: 10.1103/PhysRevD.62.124011. - DOI
Publication types
LinkOut - more resources
Full Text Sources