Estimating the potential biodiversity impact of redeveloping small urban spaces: the Natural History Museum's grounds

PeerJ. 2017 Oct 30:5:e3914. doi: 10.7717/peerj.3914. eCollection 2017.


Background: With the increase in human population, and the growing realisation of the importance of urban biodiversity for human wellbeing, the ability to predict biodiversity loss or gain as a result of land use change within urban settings is important. Most models that link biodiversity and land use are at too coarse a scale for informing decisions, especially those related to planning applications. Using the grounds of the Natural History Museum, London, we show how methods used in global models can be applied to smaller spatial scales to inform urban planning.

Methods: Data were extracted from relevant primary literature where species richness had been recorded in more than one habitat type within an urban setting. As within-sample species richness will increase with habitat area, species richness estimates were also converted to species density using theory based on the species-area relationship. Mixed-effects models were used to model the impact on species richness and species density of different habitat types, and to estimate these metrics in the current grounds and under proposed plans for redevelopment. We compared effects of three assumptions on how within-sample diversity scales with habitat area as a sensitivity analysis. A pre-existing database recording plants within the grounds was also used to estimate changes in species composition across different habitats.

Results: Analysis estimated that the proposed plans would result in an increase of average biodiversity of between 11.2% (when species density was modelled) and 14.1% (when within-sample species richness was modelled). Plant community composition was relatively similar between the habitats currently within the grounds.

Discussion: The proposed plans for change in the NHM grounds are estimated to result in a net gain in average biodiversity, through increased number and extent of high-diversity habitats. In future, our method could be improved by incorporating purposefully collected ecological survey data (if resources permit) and by expanding the data sufficiently to allow modelling of the temporal dynamics of biodiversity change after habitat disturbance and creation. Even in its current form, the method produces transparent quantitative estimates, grounded in ecological data and theory, which can be used to inform relatively small scale planning decisions.

Keywords: Biodiversity value; Habitat loss; Habitat redevelopment; Species density; Species–area relationship.

Grants and funding

This work was funded by the Natural History Museum in relation to their renovation of their grounds. Helen R.P. Phillips was supported by a Hans Rausing Scholarship. Andy Purvis was supported by NERC (grant NE/J011193/2). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.