The representative characteristic of ascidians is their vertebrate-like, tadpole shape at the larval stage. Ascidians lose the tadpole shape through metamorphosis to become adults with a nonmotile, sessile body and a shape generally considered distinct from that of vertebrates. Solitary ascidians including Ciona species are extensively studied to understand the developmental mechanisms of ascidians, and to compare these mechanisms with their counterparts in vertebrates. In these ascidian species, the digestive and circulatory systems are not well developed in the larval trunk and the larvae do not take food. This is in contrast with the inner conditions of vertebrate tadpoles, which have functional organs comparable to those of adults. The adult organs and tissues of these ascidians become functional during metamorphosis that is completed quickly, suggesting that the ascidian larvae of solitary species are a transient stage of development. We here discuss how the cells and tissues in the ascidian larval body are converted into those of adults. The hearts of ascidians and vertebrates use closely related cellular and molecular mechanisms that suggest their shared origin. Hox genes of ascidians are essential for forming adult endodermal structures. To fully understand the development and evolution of chordates, a complete elucidation of the mechanisms underlying the adult tissue/organ formation of ascidians will be needed. WIREs Dev Biol 2018, 7:e304. doi: 10.1002/wdev.304 This article is categorized under: Comparative Development and Evolution > Body Plan Evolution Early Embryonic Development > Development to the Basic Body Plan.
© 2017 Wiley Periodicals, Inc.