Synthesis, Photophysical and Computational Study of Novel Coumarin-based Organic Dyes

Photochem Photobiol. 2018 Mar;94(2):261-276. doi: 10.1111/php.12852. Epub 2018 Jan 25.

Abstract

A series of novel coumarin pyrazoline moieties combined with tetrazoles, 3-(1-phenyl-4-(1H-tetrazol-5-yl)-1H-pyrazol-3-yl)-2H-chromen-2-one, 6-chloro-3-(1-phenyl-4-(1H-tetrazol-5-yl)-1H-pyrazol-3-yl)-2H-chromen-2-one, 6-bromo-3-(1-phenyl-4-(1H-tetrazol-5-yl)-1H-pyrazol-3-yl)-2H-chromen-2-one and 6-bromo-3-(1-(4-bromophenyl)-4-(1H-tetrazol-5-yl)-1H pyrazol-3-yl)-2H-chromen-2-one7(a-d), were designed and synthesized. Single crystal X-ray diffraction and their interactions were studied by Hirshfeld surface analysis. Thermal stabilities and electrochemical properties of these compounds were examined from differential scanning calorimetry (DSC), thermogravimetric (TGA) and cyclic voltammetric (CV) studies. Their spectroscopic properties were analyzed in various alcohols and general solvents by UV-Vis absorption, fluorescence and time-resolved spectroscopy. In addition, the ground and excited state electronic properties were investigated using density functional theory (DFT). The calculated highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) and energy band gap (Eg ) values have revealed the effect of substitution of halogens. The substitution has equally affected the ground and excited states of 7(a-d) compounds. The solvatochromism on absorption, fluorescence spectra and fluorescence lifetimes of these compounds was investigated. All these results showed the chromen-2-one of pyrazoline tetrazole derivatives could play an important role in photonic and electronic devices.

Publication types

  • Research Support, Non-U.S. Gov't