Simvastatin potentiates doxorubicin activity against MCF-7 breast cancer cells

Oncol Lett. 2017 Nov;14(5):6243-6250. doi: 10.3892/ol.2017.6783. Epub 2017 Aug 21.

Abstract

Simvastatin is a low density lipoprotein-lowering drug that is widely used to prevent and treat cardiovascular disease by inhibiting the mevalonate pathway. Simvastatin also exhibits inhibitory effects on a number of types of cancer. In the present study, the effects of simvastatin on the activity of doxorubicin in the breast cancer MCF-7 cell line, and the mechanisms by which this interaction occurs were investigated. The effect of simvastatin and doxorubicin treatment, alone and in combination, on the growth of MCF-7 cells was evaluated by a sulforhodamine B and colony formation assay. To delineate the mechanisms of cell death, the following parameters were measured: Reactive oxygen species (ROS) production using the fluorescence probe dihydroethidium; caspase 3 activity by the fluorometry method; gene expression by quantitative polymerase chain reaction; and apoptotic- and proliferative-related protein levels by western blotting. MCF-7 cell proliferation was significantly suppressed by 24-48 h treatment with simvastatin alone. Doses of 10-50 µM simvastatin also enhanced the cytotoxicity of doxorubicin against MCF-7 cells in a dose-dependent manner, and decreased the colony-forming ability of MCF-7 cells. Simvastatin alone or in combination with doxorubicin significantly increased ROS levels. Combination treatment significantly decreased expression of the cell cycle regulatory protein Ras-related C3 botulinum toxin substrate 1 and numerous downstream proteins including cyclin-dependent kinase (Cdk) 2, Cdk4 and Cdk6. Additionally, simvastatin in combination with doxorubicin significantly induced expression of the cyclin-dependent kinase inhibitor p21, increased cytochrome c and caspase 3 expression and reduced cyclin D1 expression. In conclusion, simvastatin acts synergistically with the anticancer drug doxorubicin against MCF-7 cells, possibly through a downregulation of the cell cycle or induction of apoptosis. Although additional studies are required, simvastatin and doxorubicin combination may be a reasonable regimen for the treatment of breast cancer.

Keywords: Ras-related C3 botulinum toxin substrate 1; breast cancer; caspase 3; doxorubicin; simvastatin.