Radiation Exposure during Neurointerventional Procedures in Modern Biplane Angiographic Systems: A Single-Site Experience

Interv Neurol. 2017 Oct;6(3-4):105-116. doi: 10.1159/000456622. Epub 2017 Feb 11.

Abstract

Background and purpose: Per the ALARA principle, reducing the dose delivered to both patients and staff must be a priority for endovascular therapists, who should monitor their own practice. We evaluated patient exposure to radiation during common neurointerventions performed with a recent flat-panel detector angiographic system and compared our results with those of recently published studies.

Methods: All consecutive patients who underwent a diagnostic cerebral angiography or intervention on 2 modern flat-panel detector angiographic biplane systems (Innova IGS 630, GE Healthcare, Chalfont St Giles, UK) from February to November 2015 were retrospectively analyzed. Dose-area product (DAP), cumulative air kerma (CAK) per plane, fluoroscopy time (FT), and total number of digital subtraction angiography (DSA) frames were collected, reported as median (interquartile range), and compared with the previously published literature.

Results: A total of 755 consecutive cases were assessed in our institution during the study period, including 398 diagnostic cerebral angiographies and 357 interventions. The DAP (Gy × cm2), fontal and lateral CAK (Gy), FT (min), and total number of DSA frames were as follows: 43 (33-60), 0.26 (0.19-0.33), 0.09 (0.07-0.13), 5.6 (4.2-7.5), and 245 (193-314) for diagnostic cerebral angiographies, and 66 (41-110), 0.46 (0.25-0.80), 0.18 (0.10-0.30), 18.3 (9.1-30.2), and 281 (184-427) for interventions.

Conclusion: Our diagnostic cerebral angiography group had a lower median and was in the 75th percentile of DAP and FT when compared with the published literature. For interventions, both DAP and number of DSA frames were significantly lower than the values reported in the literature, despite a higher FT. Subgroup analysis by procedure type also revealed a lower or comparable DAP.

Keywords: Endovascular surgical neuroradiology; Interventional neuroradiology; Radiation exposure.