Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2018 Jun;64(3):529-534.
doi: 10.1007/s00294-017-0772-x. Epub 2017 Nov 8.

Functional Diversity in the pH Signaling Pathway: An Overview of the Pathway Regulation in Neurospora Crassa

Affiliations
Review

Functional Diversity in the pH Signaling Pathway: An Overview of the Pathway Regulation in Neurospora Crassa

Stela Virgilio et al. Curr Genet. .

Abstract

Microorganisms have the ability to adapt and respond to different environmental conditions, whether they are stressful or not. Although the detection and/or responding mechanisms are often unknown, a large number of proteins may participate in signal transduction pathways involved in environmental stimulus to induce physiological and cellular events. Here, we examine the important role in cell homeostasis that extracellular pH plays in different fungi, and summarize the recent data reported in distinct organisms, by comparing them to the well-characterized mechanisms firstly described in Aspergillus and yeast. While most of the knowledge regarding the cellular processes triggered by the pH signaling pathway is based on the work in these two organisms, new data have been emerging in a diverse group of filamentous fungi, namely the involvement of this signaling pathway in metabolism and fungal pathogenicity. In this review, we present the major aspects of the pH signaling pathway in different model organisms, focusing on the protein components and the biological processes influenced by this pathway. In particular, we discuss novel cellular processes regulated by this pathway in the fungus Neurospora crassa. The diversity of functional processes that are affected under pH stress highlights how broadly this condition impacts on basic cellular processes in fungi and reveals how divergent fungal species are.

Keywords: Ambient pH stress; Fungi; Reserve carbohydrate metabolism; Signaling pathways; Transcription factors.

Similar articles

See all similar articles

Cited by 3 articles

References

    1. J Bacteriol. 1979 Sep;139(3):761-9 - PubMed

References

    1. Eukaryot Cell. 2007 Jun;6(6):960-70 - PubMed

References

    1. Eukaryot Cell. 2005 Jun;4(6):999-1008 - PubMed

References

    1. PLoS Genet. 2015 Apr 10;11(4):e1005159 - PubMed

References

    1. Curr Genet. 2015 Nov;61(4):503-11 - PubMed

References

    1. Enzyme Microb Technol. 2014 Dec;67:17-26 - PubMed

References

    1. Genetics. 1997 Jan;145(1):63-73 - PubMed

References

    1. Microb Cell. 2015 May 22;2(6):182-196 - PubMed

References

    1. Mol Microbiol. 2007 Nov;66(4):858-71 - PubMed

References

    1. Invest Ophthalmol Vis Sci. 2010 Sep;51(9):4668-76 - PubMed

References

    1. J Biol Chem. 2007 Nov 30;282(48):34735-47 - PubMed

References

    1. Trends Microbiol. 2008 Jun;16(6):291-300 - PubMed

References

    1. Nature. 2003 Apr 24;422(6934):859-68 - PubMed

References

    1. Eukaryot Cell. 2008 Dec;7(12):2113-22 - PubMed

References

    1. Mol Microbiol. 2015 Dec;98(6):1051-72 - PubMed

References

    1. PLoS One. 2017 Jan 20;12(1):e0169796 - PubMed

References

    1. Appl Microbiol Biotechnol. 2016 May;100(10):4423-33 - PubMed

References

    1. Biochem J. 2017 Jan 1;474(1):51-63 - PubMed

References

    1. PLoS One. 2011;6(9):e25654 - PubMed

References

    1. mBio. 2013 Jan 15;4(1): - PubMed

References

    1. Infect Immun. 2000 Oct;68(10):5953-9 - PubMed

References

    1. BMC Genomics. 2016 Aug 20;17:662 - PubMed

References

    1. FEBS J. 2012 Apr;279(8):1407-13 - PubMed

References

    1. EMBO J. 2002 Mar 15;21(6):1350-9 - PubMed

References

    1. Fungal Genet Biol. 2015 Apr;77:82-94 - PubMed

References

    1. Cell. 2014 Sep 11;158(6):1431-1443 - PubMed

References

    1. BMC Genomics. 2017 Jun 9;18(1):457 - PubMed

References

    1. Microbiology. 2014 Sep;160(Pt 9):1985-1998 - PubMed

References

    1. PLoS One. 2012;7(8):e44258 - PubMed

References

    1. Curr Genet. 2016 May;62(2):283-6 - PubMed

References

    1. mBio. 2017 Jan 31;8(1): - PubMed

References

    1. Trends Genet. 2003 Apr;19(4):224-31 - PubMed

References

    1. Microbiol Mol Biol Rev. 2004 Mar;68(1):1-108 - PubMed

References

    1. Fungal Genet Biol. 2010 May;47(5):446-57 - PubMed

References

    1. Appl Microbiol Biotechnol. 2016 Apr;100(8):3621-35 - PubMed

References

    1. FEBS Lett. 1991 May 20;283(1):19-22 - PubMed

References

    1. Biochim Biophys Acta. 2015 Jun;1849(6):653-64 - PubMed

References

    1. G3 (Bethesda). 2016 May 03;6(5):1327-43 - PubMed

References

    1. Proc Natl Acad Sci U S A. 2006 Jul 5;103(27):10352-10357 - PubMed

References

    1. Fungal Genet Biol. 2015 Dec;85:25-37 - PubMed

References

    1. Eukaryot Cell. 2004 Jun;3(3):741-51 - PubMed

References

    1. OMICS. 2010 Oct;14(5):517-23 - PubMed

References

    1. PLoS One. 2016 Aug 24;11(8):e0161659 - PubMed

References

    1. IUBMB Life. 2013 Nov;65(11):930-5 - PubMed

References

    1. Eukaryot Cell. 2003 Aug;2(4):718-28 - PubMed

References

    1. PLoS One. 2014 Oct 21;9(10):e110603 - PubMed

References

    1. Mol Microbiol. 2002 Dec;46(5):1319-33 - PubMed

References

    1. Cell Microbiol. 2008 Nov;10(11):2180-96 - PubMed

References

    1. J Biol Chem. 2001 Jan 19;276(3):1850-6 - PubMed

References

    1. J Gen Microbiol. 1981 Jul;125(1):33-9 - PubMed

References

    1. Mol Cell Biol. 2014 Feb;34(4):673-84 - PubMed

References

    1. Environ Microbiol. 2017 Feb;19(2):788-802 - PubMed

References

    1. Mol Cell Biol. 2003 Jan;23(2):677-86 - PubMed

MeSH terms

Substances

LinkOut - more resources

Feedback