Oligodendrocytes (OLs) are glial cells in the central nervous system (CNS), which produce myelin, a lipid-rich membrane that insulates neuronal axons. The main function ascribed to OLs is to regulate the speed of electric pulse transmission, and as such OLs have been widely considered as a single and discrete population. Nevertheless, OLs and their precursor cells (OPCs) throughout the CNS have different morphologies and regional functional differences have been observed. Moreover, OLs have recently been involved in other functional processes such as metabolic coupling with axons. In this review, we focus on recent advances in single-cell transcriptomics suggesting that OLs are more heterogeneous than previously thought, with defined subpopulations and cell states that are associated with different stages of lineage progression and might also represent distinct functional states.
Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.