Innovative in Situ Ball Mill for X-ray Diffraction

Anal Chem. 2017 Dec 19;89(24):13176-13181. doi: 10.1021/acs.analchem.7b02871. Epub 2017 Dec 1.

Abstract

The renewed interest of mechanochemistry as an ecofriendly synthetic route has inspired original methodologies to probe reactions, with the aim to rationalize unknown mechanisms. Recently, Friščić et al. ( Nat. Chem. 2013 , 5 , 66 - 73 , DOI: 10.1038/nchem.1505 ) monitored the progress of milling reactions by synchrotron X-ray powder diffraction (XRPD). For the first time, it was possible to acquire directly information during a mechanochemical process. This new methodology is still in its early stages, and its development will definitively transform the fundamental understanding of mechanochemistry. A new type of in situ ball mill setup has been developed at the Materials Science beamline (Swiss Light Source, Paul Scherrer Institute, Switzerland). Its particular geometry, described here in detail, results in XRPD data displaying significantly lower background and much sharper Bragg peaks, which in turn allow more sophisticated analysis of mechanochemical processes, extending the limits of the technique.

Publication types

  • Research Support, Non-U.S. Gov't