Changing patterns in water toxicity associated with current use pesticides in three California agriculture regions

Integr Environ Assess Manag. 2018 Mar;14(2):270-281. doi: 10.1002/ieam.2005. Epub 2017 Dec 22.


Regulation of agriculture irrigation water discharges in California, USA, is assessed and controlled by its 9 Regional Water Quality Control Boards under the jurisdiction of the California State Water Resources Control Board. Each Regional Water Board has developed programs to control pesticides in runoff as part of the waste discharge requirements implemented through each region's Irrigated Lands Regulatory Program. The present study assessed how pesticide use patterns differ in the Imperial (Imperial County) and the Salinas and Santa Maria (Monterey County) valleys, which host 3 of California's prime agriculture areas. Surface-water toxicity associated with current use pesticides was monitored at several sites in these areas in 2014 and 2015, and results were linked to changes in pesticide use patterns in these areas. Pesticide use patterns appeared to coincide with differences in the way agriculture programs were implemented by the 2 respective Regional Water Quality Control Boards, and these programs differed in the 2 Water Board Regions. Different pesticide use patterns affected the occurrence of pesticides in agriculture runoff, and this influenced toxicity test results. Greater detection frequency and higher concentrations of the organophosphate pesticide chlorpyrifos were detected in agriculture runoff in Imperial County compared to Monterey County, likely due to more rigorous monitoring requirements for growers using this pesticide in Monterey County. Monterey County agriculture runoff contained toxic concentrations of pyrethroid and neonicotinoid pesticides, which impacted amphipods (Hyalella azteca) and midge larvae (Chironomus dilutus) in toxicity tests. Study results illustrate how monitoring strategies need to evolve as regulatory actions affect change in pesticide use and demonstrate the importance of using toxicity test indicator species appropriate for the suite of contaminants in runoff in order to accurately assess environmental risk. Integr Environ Assess Manag 2018;14:270-281. © 2017 SETAC.

Keywords: Agriculture runoff; Pesticides; Policy; Toxicity.

MeSH terms

  • Agriculture / statistics & numerical data
  • California
  • Environmental Monitoring*
  • Pesticides / toxicity*
  • Water Pollutants, Chemical / analysis
  • Water Pollutants, Chemical / toxicity*
  • Water Pollution, Chemical / statistics & numerical data*


  • Pesticides
  • Water Pollutants, Chemical