Fluid structure interaction model analysis of cerebrospinal fluid circulation in patients with continuous-flow left ventricular assist devices

Int J Artif Organs. 2017 Nov 16;0. doi: 10.5301/ijao.5000657. Online ahead of print.

Abstract

Purpose: The current 1-dimensional fluid structure interaction model (FSI) for understanding cerebrospinal fluid (CSF) circulation requires pulsatility as a precondition and has not been applied to patients with continuous-flow left ventricular assist devices (CF-LVAD) where pulsatility is chronically reduced. Our study aims to characterize the behavior of CSF pressure and flow in patients with CF-LVADs using a computational FSI model.

Methods: Utilizing the computational FSI model, CSF production in choroid plexuses of the 4 ventricles was specified as a boundary condition for the model. The other source of production from capillary ultrafiltrate spaces was accounted for by the mass conservation equation. The primary CSF absorption sites (i.e., arachnoid granulations) were treated as the outlet boundary conditions. We established a low pulse wave to represent patients with a CF-LVAD.

Results: From the model, low pulse conditions resulted in a reduction in CSF pressure amplitude and velocity though the overall flow rate was unchanged.

Conclusions: The existing FSI model is not a suitable representation of CSF flow in CF-LVAD patients. More studies are needed to elucidate the role of pulsatility in CSF flow and the compensatory changes in CSF production and absorption that occur in patients with CF-LVADs in whom pulsatility is diminished.